Driving chemical reactions with light

The chemistry of photosynthesis is still poorly understood. However, researchers from Johannes Gutenberg University Mainz (JGU) in Germany and Rice University in Houston have now uncovered a major piece of the puzzle. Their ...

Highly resorptive metal-organic frameworks

Gases and pollutants can be filtered from air and liquids by means of porous, crystalline materials, such as metal–organic frameworks (MOFs). To further partition these pores and enhance their sorption capacity, a team ...

Developing a model critical in creating better devices

Water is everywhere. Understanding how it behaves at an intersection with another material and how it affects the performance of that material is helpful when trying to develop better products and devices. An undergraduate ...

Modified 'white graphene' for eco-friendly energy

Scientists from Tomsk Polytechnic University (TPU), together with colleagues from the United States and Germany, have found a way to obtain inexpensive catalysts from hexagonal boron nitride or "white graphene." The technology ...

The golden path towards new two-dimensional semiconductors

Two-dimensional (2-D) semiconductors are promising for quantum computing and future electronics. Now, researchers can convert metallic gold into semiconductor and customize the material atom-by-atom on boron nitride nanotubes.

page 1 from 23

Boron

Boron ( /ˈbɔərɒn/) is the chemical element with atomic number 5 and the chemical symbol B. Boron is a metalloid. Because boron is not produced by stellar nucleosynthesis, it is a low-abundance element in both the solar system and the Earth's crust. However, boron is concentrated on Earth by the water-solubility of its more common naturally occurring compounds, the borate minerals. These are mined industrially as evaporate ores, such as borax and kernite.

Chemically uncombined boron is not found naturally on Earth. Industrially, very pure boron is produced with difficulty, as boron tends to form refractory materials containing small amounts of carbon or other elements. Several allotropes of boron exist: amorphous boron is a brown powder and crystalline boron is black, extremely hard (about 9.5 on Mohs' scale), and a poor conductor at room temperature. Elemental boron is used as a dopant in the semiconductor industry.

The major industrial-scale uses of boron compounds are in sodium perborate bleaches, and the borax component of fiberglass insulation. Boron polymers and ceramics play specialized roles as high-strength lightweight structural and refractory materials. Boron compounds are used in silica-based glasses and ceramics to give them resistance to thermal shock. Boron-containing reagents are used for the synthesis of organic compounds, as intermediate in the synthesis of fine chemicals. A few boron-containing organic pharmaceuticals are used, or are in study. Natural boron is composed of two stable isotopes, one of which (boron-10) has a number of uses as a neutron-capturing agent.

In biology, borates have low toxicity in mammals (similar to table salt), but are more toxic to arthropods and are used as insecticides. Boric acid is mildly antimicrobial, and a natural boron-containing organic antibiotic is known. Boron is essential to life. Small amounts of boron compounds play a strengthening role in the cell walls of all plants, making boron necessary in soils. Experiments indicate a role for boron as an ultratrace element in animals, but the nature of its role in animal physiology is unknown.

This text uses material from Wikipedia, licensed under CC BY-SA