The perfect atomic-scale sieve

Graphene is perfectly selective to protons and blocks even smallest ions like chlorine, University of Manchester research shows. This result will be important for the development of graphene-based membranes for applications ...

Small-volume, high-throughput organic synthesis

University of Groningen Professor of Drug Design, Alexander Dömling, has devised a method to rapidly synthesize thousands of new molecules and evaluate their properties as potential drugs. In a paper published by Science ...

Curbing the flammability of epoxy resin

In a paper to be published in a forthcoming issue of Nano, a team of researchers from Henan University have investigated the flame retardant performance of epoxy resin using a boron nitride nanosheet decorated with cobalt ...

page 1 from 23

Boron

Boron ( /ˈbɔərɒn/) is the chemical element with atomic number 5 and the chemical symbol B. Boron is a metalloid. Because boron is not produced by stellar nucleosynthesis, it is a low-abundance element in both the solar system and the Earth's crust. However, boron is concentrated on Earth by the water-solubility of its more common naturally occurring compounds, the borate minerals. These are mined industrially as evaporate ores, such as borax and kernite.

Chemically uncombined boron is not found naturally on Earth. Industrially, very pure boron is produced with difficulty, as boron tends to form refractory materials containing small amounts of carbon or other elements. Several allotropes of boron exist: amorphous boron is a brown powder and crystalline boron is black, extremely hard (about 9.5 on Mohs' scale), and a poor conductor at room temperature. Elemental boron is used as a dopant in the semiconductor industry.

The major industrial-scale uses of boron compounds are in sodium perborate bleaches, and the borax component of fiberglass insulation. Boron polymers and ceramics play specialized roles as high-strength lightweight structural and refractory materials. Boron compounds are used in silica-based glasses and ceramics to give them resistance to thermal shock. Boron-containing reagents are used for the synthesis of organic compounds, as intermediate in the synthesis of fine chemicals. A few boron-containing organic pharmaceuticals are used, or are in study. Natural boron is composed of two stable isotopes, one of which (boron-10) has a number of uses as a neutron-capturing agent.

In biology, borates have low toxicity in mammals (similar to table salt), but are more toxic to arthropods and are used as insecticides. Boric acid is mildly antimicrobial, and a natural boron-containing organic antibiotic is known. Boron is essential to life. Small amounts of boron compounds play a strengthening role in the cell walls of all plants, making boron necessary in soils. Experiments indicate a role for boron as an ultratrace element in animals, but the nature of its role in animal physiology is unknown.

This text uses material from Wikipedia, licensed under CC BY-SA