How new species arise in the sea

March 5, 2019, Helmholtz Association of German Research Centres
A barred Hamlet (Hypoplectrus puella) off the coast of Panama. Credit: Kosmas Hench/GEOMAR

For a new species to evolve, two things are essential: a characteristic—such as a colour—unique to one species and a mating preference for this characteristic. For example, individuals from a blue fish species prefer blue mates and individuals from a red fish species prefer red mates. If the two species interbreed, the process of sexual recombination is expected to destroy the coupling between colour and mate preferences and form red individuals with a preference for blue mates and vice versa. This will prevent the two species from diverging, and this is one of the reasons why it has been thought for a long time that new species can only evolve in absolute isolation, without interbreeding.

However, the dynamics of this process depend on the exact number and location of underlying species characteristics and mate preferences, the strength of natural selection acting on these genes, and the amount of interbreeding between species. In a new study, Professor Oscar Puebla from GEOMAR Helmholtz Centre for Ocean Research Kiel in Germany together with colleagues from the Smithsonian Tropical Research Institute in Panama have found that can couple the evolution of genes for colour pattern and mate preferences when species still interbreed. The study has been published today in the international journal Nature Ecology and Evolution.

"To address this question, the first challenge was to identify an animal group in which species are still young and interbreed, with clear species characteristics, and in which the bases of reproductive isolation are well understood", Oscar Puebla explains. The hamlets, a group of closely related reef fishes from the wider Caribbean, constitute exactly such a group. The hamlets are extremely close genetically, differ essentially in terms of colour pattern, and are reproductively isolated through strong visually-based mate preferences.

A second difficulty is identifying the genes that underlie species differences and mate preferences. The authors of the new study have assembled a reference genome for the hamlets and sequenced the whole genomes of 110 individuals from three species in Panama, Belize and Honduras. "This powerful dataset allowed us to identify four narrow regions of the genome that are highly and consistently differentiated among species in a backdrop of almost no genetic differentiation in the rest of the genome", co-author Kosmas Hench from GEOMAR says. In line with the ecology and reproductive biology of the hamlets, these four intervals include genes involved in vision and pattern.

The data also show that vision and genes remain coupled despite the fact that they are located on three different chromosomes and that still interbreed. Such a coupling had been previously reported when the two sets of genes are very close to each other on chromosomes, in which case they are protected from sexual recombination, but not when they are on different chromosomes. By capturing the very earliest stages of speciation in hamlets, the team shows how selection can contribute to the creation of .

"A lot of closely related coral reef fishes differ in little else but color and pattern," said Owen McMillan, co-author and academic dean at the Smithsonian Tropical Research Institute. "I fully expect that the discoveries we have made in hamlets will apply to other forms of life and may ultimately explain the remarkable diversity of fishes on coral reefs around the world."

Explore further: Mystery of color patterns of reef fish solved

More information: Inter-chromosomal coupling between vision and pigmentation genes during genomic divergence, Nature Ecology and Evolution (2019). DOI: 10.1038/s41559-019-0814-5 , https://www.nature.com/articles/s41559-019-0814-5

Related Stories

A single genetic switch changes butterfly wing color

October 25, 2018

Heliconius butterflies are a diverse and colorful group of species that live throughout tropical regions of Central and South America. Many of them have wing patterns and colors that mimic other species to protect themselves ...

Fishes' innate food choice could change with the environment

March 4, 2015

The fact that fish choose their food based on what colours they can see, as opposed to how it tastes, is an inherited trait that could have implications for the evolution in the animal kingdom, new Deakin University research ...

Recommended for you

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

NASA instruments image fireball over Bering Sea

March 22, 2019

On Dec. 18, 2018, a large "fireball—the term used for exceptionally bright meteors that are visible over a wide area—exploded about 16 miles (26 kilometers) above the Bering Sea. The explosion unleashed an estimated 173 ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.