A single genetic switch changes butterfly wing color

October 25, 2018, University of Chicago Medical Center
Heliconius cydno butterflies have either white or yellow markings on their wings, which is controlled by a single gene. Credit: Kat Carlton, UChicago

Heliconius butterflies are a diverse and colorful group of species that live throughout tropical regions of Central and South America. Many of them have wing patterns and colors that mimic other species to protect themselves from predators, and new research by scientists from the University of Chicago shows that in one species, Heliconius cydno, just one gene controls whether the butterfly has white or yellow spots on its wings.

To conduct the study, which was published Oct. 25 in Current Biology, the researchers developed a genetic map using white and yellow H. cydno . They then studied genome sequences to identify a single gene called aristaless1 (al1) that acted as a switch for yellow and white coloration.

Most Heliconius closely related to H. cydno have yellow spots on their wings; H. cydno has subspecies that are either yellow or white. The researchers saw that the butterflies with white spots have elevated expression of al1 (i.e. it's switched "on"), meaning that it may play a role in repressing yellow pigmentation from being produced. Using CRISPR/Cas9 gene editing tools, the scientists confirmed this function of al1. When they knocked it out (or switched it off) in embryos of butterflies that should be white, those butterflies developed yellow spots instead.

"For decades people have been cross-breeding these butterflies and they knew that this white vs. yellow switch was in one spot in the genome. They just weren't able to trace it to the actions of a single gene," said Marcus Kronforst, Ph.D., associate professor of ecology and evolution and senior author of the study.

Heliconius cydno butterflies have either white or yellow markings on their wings, which is controlled by a single gene. Credit: Kat Carlton, UChicago
"Now with CRISPR we can knock the gene out and see what happens. It turns out the evolutionary innovation here is not one species gaining a pigment, but instead turning on a gene to repress an ancestrally present pigment," he said.

Kronforst and his team also traced the evolutionary history this color patterning by comparing genetic differences in the H. cydno version of al1 to those of other, closely-related Heliconius species. The white version of the gene appears to be a relatively new development. While H. cydno was the first species to develop white forms, there are signs of cross-breeding that introduced the white color into other species at a later time.

There is also evidence that the same gene may be linked to mating preferences for color. White H. cydno males prefer females with white spots; yellow males likewise prefer yellow females. Scientists have long known that genes for both color patterning and mate preference in H. cydno are located in the same area of the genome.

UChicago biologist Marcus Kronforst discusses his research on genes that control wing color mimicry in butterflies. Credit: Matt Wood, UChicago
"Now that we know the molecular basis of the color, we can start asking how preference is linked to it," Kronforst said. "Are they two near one another or is it somehow the same gene doing both jobs?"

While Kronforst and his team don't yet know if is controlled by al1 or another gene nearby, the close proximity could account for the diversity of Heliconius species.

"Whether it was natural selection driving it or it was just chance that these two things are linked, that might be part of the reason why we have such a diverse group of butterflies," he said. "When the color and preference for the color are linked together, it causes these things to evolve together very rapidly."

Explore further: Caught in the act: Scientists find butterflies splitting into two species

More information: "Aristaless controls butterfly wing color variation used in mimicry and mate choice," Current Biology (2018). DOI: 10.1016/j.cub.2018.08.051

Related Stories

Scientists find evolution in butterfly eye dependent on sex

May 18, 2017

By analyzing both the genes that control color detecting photoreceptors and the structural components of the eye itself, University of California, Irvine evolutionary biologists have discovered male and female butterflies ...

Evolution of new species requires few genetic changes

October 31, 2013

Only a few genetic changes are needed to spur the evolution of new species—even if the original populations are still in contact and exchanging genes. Once started, however, evolutionary divergence evolves rapidly, ultimately ...

Recreation Of Butterfly Speciation Event

June 19, 2006

In a matter of months, butterflies sporting the yellow and red wing color pattern of a wild species were created through simple laboratory crosses of two other wild species, researchers report in the June 15, 2006 edition ...

An eye gene colors butterfly wings red

July 21, 2011

Red may mean STOP or I LOVE YOU! A red splash on a toxic butterfly's wing screams DON'T EAT ME! In nature, one toxic butterfly species may mimic the wing pattern of another toxic species in the area. By using the same signal, ...

Recommended for you

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

EPA adviser is promoting harmful ideas, scientists say

March 22, 2019

The Trump administration's reliance on industry-funded environmental specialists is again coming under fire, this time by researchers who say that Louis Anthony "Tony" Cox Jr., who leads a key Environmental Protection Agency ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.