Breakthrough could enable cheaper infrared cameras

March 7, 2019, University of Chicago
Breakthrough could enable cheaper infrared cameras
Photos taken by researchers testing a new method to make an infrared camera that could be much less expensive to manufacture. Credit: Xin Tang et al

There's an entire world our eyes miss, hidden in the ranges of light wavelengths that human eyes can't see. But infrared cameras can pick up the secret light emitted as plants photosynthesize, as cool stars burn and batteries get hot. They can see through smoke and fog and plastic.

But infrared cameras are much more expensive than visible- ones; the energy of infrared light is smaller than visible light, making it harder to capture. A new breakthrough by scientists with the University of Chicago, however, may one day lead to much more cost-effective infrared cameras—which in turn could enable infrared cameras for common consumer electronics like phones, as well as sensors to help autonomous cars see their surroundings more accurately.

"Traditional methods to make infrared cameras are very expensive, both in materials and time, but this method is much faster and offers excellent performance," said postdoctoral researcher Xin Tang, the first author on a study which appeared Feb. 25 in Nature Photonics.

"That's why we're so excited about the potential commercial impact," said co-author Philippe Guyot-Sionnest, a professor of physics and chemistry.

Today's infrared cameras are made by successively laying down multiple layers of semiconductors—a tricky and error-prone process that makes them too expensive to go into most .

Guyot-Sionnest's lab instead turned to quantum dots—tiny nanoparticles just a few nanometers in size. (One nanometer is how much your fingernails grow per second.) At that scale they have odd properties that change depending on their size, which scientists can control by tuning the particle to the right size. In this case, quantum dots can be tuned to pick up wavelengths of infrared light.

This 'tunability' is important for cameras, because they need to pick up different parts of the infrared spectrum. "Collecting multiple wavelengths within the infrared gives you more spectral information—it's like adding color to black-and-white TV," Tang explained. "Short-wave gives you textural and chemical composition information; mid-wave gives you temperature."

They tweaked the so that they had a formula to detect short-wave infrared and one for mid-wave infrared. Then they laid both together on top of a silicon wafer.

The resulting performs extremely well and is much easier to produce. "It's a very simple process," Tang said. "You take a beaker, inject a solution, inject a second solution, wait five to 10 minutes, and you have a new solution that can be easily fabricated into a functional device."

There are many potential uses for inexpensive , the scientists said, including autonomous vehicles, which rely on sensors to scan the road and surroundings. Infrared can detect heat signatures from living beings and see through fog or haze, so car engineers would love to include them, but the cost is prohibitive.

They would come in handy for scientists, too. "If I wanted to buy an infrared detector for my laboratory today, it would cost me $25,000 or more," Guyot-Sionnest said. "But they would be very useful in many disciplines. For example, proteins give off signals in infrared, which a biologist would love to easily track."

Explore further: Nanotechnology makes it possible for mice to see in infrared

More information: Xin Tang et al, Dual-band infrared imaging using stacked colloidal quantum dot photodiodes, Nature Photonics (2019). DOI: 10.1038/s41566-019-0362-1

Related Stories

Nanotechnology makes it possible for mice to see in infrared

February 28, 2019

Mice with vision enhanced by nanotechnology were able to see infrared light as well as visible light, reports a study published February 28 in the journal Cell. A single injection of nanoparticles in the mice's eyes bestowed ...

New method improves infrared imaging performance

February 9, 2019

A new method developed by Northwestern Engineering's Manijeh Razeghi has greatly reduced a type of image distortion caused by the presence of spectral cross-talk between dual-band long-wavelength photodetectors.

Quantum dots used to convert infrared light to visible light

December 1, 2015

(Phys.org)—A team of researchers at MIT has succeeded in creating a double film coating that is able to convert infrared light at modest intensities into visible light. In their paper published in the journal Nature Photonics, ...

Recommended for you

ATLAS experiment observes light scattering off light

March 20, 2019

Light-by-light scattering is a very rare phenomenon in which two photons interact, producing another pair of photons. This process was among the earliest predictions of quantum electrodynamics (QED), the quantum theory of ...

How heavy elements come about in the universe

March 19, 2019

Heavy elements are produced during stellar explosion or on the surfaces of neutron stars through the capture of hydrogen nuclei (protons). This occurs at extremely high temperatures, but at relatively low energies. An international ...

Trembling aspen leaves could save future Mars rovers

March 18, 2019

Researchers at the University of Warwick have been inspired by the unique movement of trembling aspen leaves, to devise an energy harvesting mechanism that could power weather sensors in hostile environments and could even ...

Quantum sensing method measures minuscule magnetic fields

March 15, 2019

A new way of measuring atomic-scale magnetic fields with great precision, not only up and down but sideways as well, has been developed by researchers at MIT. The new tool could be useful in applications as diverse as mapping ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Thorium Boy
1 / 5 (3) Mar 08, 2019
This like most of these miraculous stories of breakthroughs will never see the light of day.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.