How antifreeze proteins make ice crystals grow

March 8, 2019, Bielefeld University
View of a research chip through a microscope: a high concentration of antifreeze proteins ensures that the drops freeze at temperatures that are less cold than usual (frozen drops are dark). Credit: Bielefeld University

Bacteria, plants, insects and fish use antifreeze proteins to protect themselves from the cold. The proteins block the growth of ice crystals. In a new study, a German-Israeli research team has confirmed that these proteins also possess an unusual second property: at low temperatures, they can promote rather than inhibit the growth of ice crystals.

The study brought together researchers from Bielefeld University, the Hebrew University of Jerusalem and the Weizmann Institute of Science in Rehovot (Israel). It is published in the Journal of Physical Chemistry Letters.

"We are studying how special, naturally occurring proteins influence the smallest of —the crystal embryos," says Professor Dr. Thomas Koop. The chemist heads Bielefeld University's Atmospheric and Physical Chemistry research group.

"Normally, such proteins ensure that crystal embryos are neutralized and do not grow into large ice crystals," he says. That dynamic is essential for the survival of the larvae of the mealworm beetle, for example. They use a to protect their skin and body fluids from damage caused by ice crystals. When the outside temperature drops, the larvae secrete an antifreeze protein into their body fluids. The cover the surface of the crystal embryos, thereby preventing them from growing large enough to damage the cells.

"By contrast, there are many other organisms that can benefit from making water turn into ice," says Koop. This is the case with certain bacteria that trigger the formation of ice, for example. They secrete proteins on which crystal embryos can form, or nucleate from the cold liquid water, and thereafter grow into large ice crystals. Some bacteria can use this to split open the skin of a tomato.

Until now, science has viewed ice-promoting and ice-inhibiting proteins as two different types of protein. That is also indicated by their different sizes: Ice-inhibiting proteins are made up of ; ice-promoting proteins, of large, long molecules.

"However, the new experiments show that an antifreeze molecule cannot just inhibit the growth of ice, it can also trigger its growth," says Koop.

The scientists have tested two naturally occurring antifreeze proteins: a protein of the larvae of the mealworm beetle and a protein of an Arctic fish, the ocean pout. They observed the effect of the proteins on thin developed at the Weizmann Institute, which are permeated with microscopically small channels with droplet traps. They took pure distilled water and added a set concentration of the specific protein. Then they injected this protein solution into the chip. In the chip, minute drops of water were collected in the droplet traps. Then they placed the chips in a temperature-controlled cooling chamber that cooled them down to minus 40 degrees.

"The pure drops in our chip should actually first freeze at minus 38.4 degrees," says Koop. However, the opposite occurred. "When the drops contained the purportedly ice-inhibiting antifreeze proteins, the ice crystal embryos already began to form and grow at warmer temperatures." Hence, in the case of the protein of the larvae of the mealworm beetle, one-half of all the drops already started to freeze at minus 33.9 degrees. "This enabled us to show that whether the antifreeze proteins have ice-inhibiting or ice-promoting properties depends on temperature. There has been speculation over the ambivalence of such proteins for many years, but we are the first to confirm this experimentally," says Professor Dr. Ido Braslavsky from the Hebrew University of Jerusalem. Professor Dr. Yinon Rudich from the Weizmann Institute adds, "It was only having the chip that enabled us to study the formation of ice through antifreeze proteins experimentally."

Some of the experiments for the study were carried out at Bielefeld University. Complementary freezing experiments and the chips used to study the water as well as the protein solutions came from the Weizmann Institute of Science in Rehovot. The antifreeze proteins of the larvae of the mealworm beetle and the artic fish were produced at the Hebrew University of Jerusalem at the Rehovot campus. Ice inhibition of the same protein solutions was also demonstrated there.

Ice-inhibiting and ice-promoting proteins are not just common in nature. Nowadays, they are also used as technical aids. For example, proteins in varnish can help protect the varnished surfaces from frost. The proteins can also be added to ice cream to help keep it creamy. Ice-forming proteins are used in, for example, ski resorts so that artificial snow can already be produced at a temperature of minus 3 degrees without having to wait for temperatures to drop further.

Explore further: Questioning conventional understanding of antifreeze proteins

More information: Lukas Eickhoff et al, Contrasting Behavior of Antifreeze Proteins: Ice Growth Inhibitors and Ice Nucleation Promoters, The Journal of Physical Chemistry Letters (2019). DOI: 10.1021/acs.jpclett.8b03719

Related Stories

Antifreeze proteins can stop ice melt, new study finds

March 1, 2010

The same antifreeze proteins that keep organisms from freezing in cold environments also can prevent ice from melting at warmer temperatures, according to a new Ohio University and Queen's University study published today ...

Recommended for you

ATLAS experiment observes light scattering off light

March 20, 2019

Light-by-light scattering is a very rare phenomenon in which two photons interact, producing another pair of photons. This process was among the earliest predictions of quantum electrodynamics (QED), the quantum theory of ...

How heavy elements come about in the universe

March 19, 2019

Heavy elements are produced during stellar explosion or on the surfaces of neutron stars through the capture of hydrogen nuclei (protons). This occurs at extremely high temperatures, but at relatively low energies. An international ...

Trembling aspen leaves could save future Mars rovers

March 18, 2019

Researchers at the University of Warwick have been inspired by the unique movement of trembling aspen leaves, to devise an energy harvesting mechanism that could power weather sensors in hostile environments and could even ...

Quantum sensing method measures minuscule magnetic fields

March 15, 2019

A new way of measuring atomic-scale magnetic fields with great precision, not only up and down but sideways as well, has been developed by researchers at MIT. The new tool could be useful in applications as diverse as mapping ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.