Researchers find an unusual way in which a material conducts heat when it is compressed

February 19, 2019, Boston College
Phonon propagating through a square lattice (atom displacements greatly exaggerated). Credit: Wikipedia

In the latest wrinkle to be discovered in cubic boron arsenide, the unusual material contradicts the traditional rules that govern heat conduction, according to a new report by Boston College researchers in today's edition of the journal Nature Communications.

Usually, when a material is compressed, it becomes a better conductor of . That was first found in studies about a century ago. In arsenide, the research team found that when the material is compressed the conductivity first improves and then deteriorates.

The explanation is based on an unusual competition between different processes that provide heat resistance, according to the co-authors Professor David Broido and Navaneetha K. Ravichandran, a post-doctoral fellow, of the Department of Physics at Boston College. This type of behavior has never been predicted or observed before.

The findings are consistent with the unconventional high thermal conductivity that Broido, a , and colleagues have previously identified in cubic boron arsenide.

Ravichandran's calculations showed that upon compression, the material first conducts heat better, similar to most materials. But as compression increases, the ability of boron arsenide to conduct heat deteriorates, the co-authors write in the article, titled "Non-monotonic pressure dependence of the thermal conductivity of boron arsenide."

Such odd behavior stems from the unusual way in which heat is transported in boron arsenide, an electrically insulating crystal in which heat is carried by phonons—vibrations of the atoms making up the crystal, Broido said. "Resistance to the flow of heat in materials like boron arsenide is caused by collisions occurring among phonons," he added.

Quantum physics shows that these collisions occur between at least three phonons at a time, he said. For decades, it had been assumed that only collisions between three phonons were important, especially for good heat conductors.

Cubic boron arsenide is unusual in that most of the heat is transported by phonons that rarely collide in triplets, a feature predicted several years ago by Broido and collaborators, including Lucas Lindsay at Oak Ridge National Laboratory and Tom Reinecke of the Naval Research Lab.

In fact, collisions between three phonons are so infrequent in boron arsenide that those between four phonons, which had been expected to be negligible, compete to limit the transport of heat, as shown by other theorists, and by Broido and Ravichandran in earlier publications.

As a result of such rare collision processes among phonon triplets, cubic boron arsenide has turned out to be an excellent thermal conductor, as confirmed by recent measurements.

Drawing on these latest insights, Ravichandran and Broido have shown that by applying hydrostatic pressure, the competition between three-phonon and four-phonon collisions can, in fact, be modulated in the material.

"When boron is compressed, surprisingly, three-phonon collisions become more frequent, while four-phonon interactions become less frequent, causing the thermal conductivity to first increase and then decrease," Ravichandran said. "Such competing responses of three-phonon and four- collisions to applied pressure has never been predicted or observed in any other material,".

The work of the theorists, supported by a Multi-University Research Initiative grant from the Office of Naval Research, is expected to be taken up by experimentalists to prove the concept, Broido said.

"This scientific prediction awaits confirmation from measurement, but the theoretical and computational approaches used have been demonstrated to be accurate from comparisons to measurements on many other materials, so we're confident that experiments will measure behavior similar to what we found." said Broido.

"More broadly, the theoretical approach we developed may also be useful for studies of the earth's lower mantle where very high temperatures and pressures can occur," said Ravichandran. "Since obtaining deep in the Earth is challenging, our predictive computational model can help give new insights into the nature of heat flow at the extreme temperature and pressure conditions that exist there."

Explore further: An unlikely competitor for diamond as the best thermal conductor

More information: Navaneetha K. Ravichandran et al, Non-monotonic pressure dependence of the thermal conductivity of boron arsenide, Nature Communications (2019). DOI: 10.1038/s41467-019-08713-0

Related Stories

A new semiconductor with record-high thermal conductivity

July 9, 2018

Scientists at UCLA, for the first time, experimentally realized a new compound single crystal, boron arsenide (BAs) and explored its thermal conductivity limit when crystals are free of defects. They observed the highest ...

Recommended for you

ATLAS experiment observes light scattering off light

March 20, 2019

Light-by-light scattering is a very rare phenomenon in which two photons interact, producing another pair of photons. This process was among the earliest predictions of quantum electrodynamics (QED), the quantum theory of ...

How heavy elements come about in the universe

March 19, 2019

Heavy elements are produced during stellar explosion or on the surfaces of neutron stars through the capture of hydrogen nuclei (protons). This occurs at extremely high temperatures, but at relatively low energies. An international ...

Trembling aspen leaves could save future Mars rovers

March 18, 2019

Researchers at the University of Warwick have been inspired by the unique movement of trembling aspen leaves, to devise an energy harvesting mechanism that could power weather sensors in hostile environments and could even ...

Quantum sensing method measures minuscule magnetic fields

March 15, 2019

A new way of measuring atomic-scale magnetic fields with great precision, not only up and down but sideways as well, has been developed by researchers at MIT. The new tool could be useful in applications as diverse as mapping ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.