A quantum magnet with a topological twist

February 22, 2019, Princeton University
Researchers explored a material that has an internal structure, shown in 3D in left panel, that consists of triangles and hexagons arranged in a pattern similar to that of a Japanese kagome basket. Credit: Hasan, et. al, Princeton University

Taking their name from an intricate Japanese basket pattern, kagome magnets are thought to have electronic properties that could be valuable for future quantum devices and applications. Theories predict that some electrons in these materials have exotic, so-called topological behaviors and others behave somewhat like graphene, another material prized for its potential for new types of electronics.

Now, an international team led by researchers at Princeton University has observed that some of the in these magnets behave collectively, like an almost infinitely massive electron that is strangely magnetic, rather than like individual particles. The study was published in the journal Nature Physics this week.

The team also showed that placing the kagome magnet in a causes the direction of magnetism to reverse. This "negative magnetism" is akin to having a compass that points south instead of north, or a refrigerator magnet that suddenly refuses to stick.

"We have been searching for super-massive 'flat-band' electrons that can still conduct electricity for a long time, and finally we have found them," said M. Zahid Hasan, the Eugene Higgins Professor of Physics at Princeton University, who led the team. "In this system, we also found that due to an internal quantum phase effect, some electrons line up opposite to the magnetic field, producing negative magnetism."

The team explored how atoms arranged in a kagome pattern in a crystal give rise to strange that can have real-world benefits, such as superconductivity, which allows electricity to flow without loss as heat, or magnetism that can be controlled at the quantum level for use in future electronics.

The researchers used state-of-the-art scanning tunneling microscopy and spectroscopy (STM/S) to look at the behavior of electrons in a kagome-patterned crystal made from cobalt and tin, sandwiched between two layers of sulfur atoms, which are further sandwiched between two layers of tin.

In the kagome layer, the cobalt atoms form triangles around a hexagon with a tin atom in the center. This geometry forces the electrons into some uncomfortable positions—leading this type of material to be called a "frustrated magnet."

To explore the electron behavior in this structure, the researchers nicked the top layers to reveal the kagome layer beneath.

They then used the STM/S technique to detect each electron's energy profile, or . The band structure describes the range of energies an electron can have within a crystal, and explains, for example, why some materials conduct electricity and others are insulators. The researchers found that some of electrons in the kagome layer have a band structure that, rather than being curved as in most materials, is flat.

Although it is expected that electrons in a magnet pointing north would move up when subjected to an applied magnetic field pointing up, the kagome electrons actually move down (left panel). Application of a magnetic field shifts the energy levels of electrons (middle panel). Energy shifts of kagome electrons show a large negative magnetic moment (right, top). Orbital arrangements of kagome electrons give rise to a geometrical quantum phase factor (right, top), known as a Berry phase, which creates an unusual magnetic state. Credit: Hasan, et al., Princeton University

A flat band structure indicates that the electrons have an effective mass that is so large as to be almost infinite. In such a state, the particles act collectively rather than as individual particles.

Theories have long predicted that the kagome pattern would create a flat band structure, but this study is the first experimental detection of a flat band electron in such a system.

One of the general predictions that follows is that a material with a flat band may exhibit negative magnetism.

Indeed, in the current study, when the researchers applied a strong magnetic field, some of the kagome magnet's electrons pointed in the opposite direction.

"Whether the field was applied up or down, the electrons' energy flipped in the same direction, that was the first thing that was strange in terms of the experiments," said Songtian Sonia Zhang, a graduate student in physics and one of three co-first-authors on the paper.

"That puzzled us for about three months," said Jia-Xin Yin, a postdoctoral research associate and another co-first author on the study. "We were searching for the reason, and with our collaborators we realized that this was the first experimental evidence that this flat band peak in the kagome lattice has a negative magnetic moment."

The researchers found that the negative magnetism arises due to the relationship between the kagome flat band, a quantum phenomenon called , magnetism and a quantum factor called the Berry curvature field. Spin-orbit coupling refers to a situation where an electron's spin, which itself is a quantum property of electrons, becomes linked to the electron's orbital rotation. The combination of spin-orbital coupling and the magnetic nature of the material leads all the electrons to behave in lock step, like a giant single particle.

Another intriguing behavior that arises from the tightly coupled spin-orbit interactions is the emergence of topological behaviors. The subject of the 2016 Nobel Prize in Physics, topological materials can have electrons that flow without resistance on their surfaces and are an active area of research. The cobalt-tin-sulfur material is an example of a topological system.

Two-dimensional patterned lattices can have other desirable types of electron conductance. For example, graphene is a pattern of carbon atoms that has generated considerable interest for its electronic applications over the past two decades. The kagome lattice's band structure gives rise to electrons that behave similarly to those in graphene.

The study, "Negative flatband magnetism in a spin-orbit coupled correlated kagome magnet," by Jia-Xin Yin, Songtian S. Zhang, Guoqing Chang, Qi Wang, Stepan S. Tsirkin, Zurab Guguchia, Biao Lian, Huibin Zhou, Kun Jiang, Ilya Belopolski, Nana Shumiya, Daniel Multer, Maksim Litskevich, Tyler A. Cochran, Hsin Lin, Ziqiang Wang, Titus Neupert, Shuang Jia, Hechang Lei and M. Zahid Hasan, was published online Feb. 18, 2019 in the journal Nature Physics.

Explore further: A new 'spin' on kagome lattices

More information: Jia-Xin Yin et al, Negative flat band magnetism in a spin–orbit-coupled correlated kagome magnet, Nature Physics (2019). DOI: 10.1038/s41567-019-0426-7

Related Stories

A new 'spin' on kagome lattices

December 7, 2018

Like so many targets of scientific inquiry, the class of material referred to as the kagome magnet has proven to be a source of both frustration and amazement. Further revealing the quantum properties of the kagome magnet ...

Scientists create atomic scale, 2-D electronic kagome lattice

November 19, 2018

Scientists from the University of Wollongong (UOW), working with colleagues at China's Beihang University, Nankai University, and Institute of Physics at Chinese Academy of Sciences, have successfully created an atomic scale, ...

The marriage of topology and magnetism in a Weyl system

August 6, 2018

Topology is a global aspect of materials, leading to fundamental new properties for compounds with large relativistic effects. The incorporation of heavy elements gives rise to non-trivial topological phases of matter, such ...

Recommended for you

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

Physicists reveal why matter dominates universe

March 21, 2019

Physicists in the College of Arts and Sciences at Syracuse University have confirmed that matter and antimatter decay differently for elementary particles containing charmed quarks.

ATLAS experiment observes light scattering off light

March 20, 2019

Light-by-light scattering is a very rare phenomenon in which two photons interact, producing another pair of photons. This process was among the earliest predictions of quantum electrodynamics (QED), the quantum theory of ...

How heavy elements come about in the universe

March 19, 2019

Heavy elements are produced during stellar explosion or on the surfaces of neutron stars through the capture of hydrogen nuclei (protons). This occurs at extremely high temperatures, but at relatively low energies. An international ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.