New quantum switch turns metals into insulators

Most modern electronic devices rely on tiny, finely-tuned electrical currents to process and store information. These currents dictate how fast our computers run, how regularly our pacemakers tick and how securely our money ...

Spinning quantum dots

The name 'quantum dots' is given to particles of semiconducting materials that are so tiny—a few nanometres in diameter—that they no longer behave quite like ordinary, macroscopic matter. Thanks to their quantum-like ...

Grain boundaries in graphene do not affect spin transport

Researchers from the ICN2 Theoretical and Computational Nanoscience Group as well as the Université catholique de Louvain have used numerical simulations to show that spin diffusion length is independent of grain size. The ...

Scientists create fully electronic 2-D spin transistors

Physicists from the University of Groningen constructed a two-dimensional spin transistor, in which spin currents were generated by an electric current through graphene. A monolayer of a transition metal dichalcogenide (TMD) ...

Conductivity at the edges of graphene bilayers

The conductivity of dual layers of graphene greatly depends on the states of carbon atoms at their edges; a property which could have important implications for information transmissions on quantum scales.

A torque on conventional magnetic wisdom

Physicists at the University of Illinois at Urbana-Champaign have observed a magnetic phenomenon called the "anomalous spin-orbit torque" (ASOT) for the first time. Professor Virginia Lorenz and graduate student Wenrui Wang, ...

New material shows high potential for quantum computing

A joint team of scientists at the University of California, Riverside, and the Massachusetts Institute of Technology is getting closer to confirming the existence of an exotic quantum particle called Majorana fermion, crucial ...

page 1 from 4