Design principles for peroxidase-mimicking nanozymes

February 18, 2019, Nanjing University

Nanozymes, enzyme-like catalytic nanomaterials, are considered to be the next generation of enzyme mimics because they not only overcome natural enzymes' intrinsic limitations, but also possess unique properties in comparison with conventional artificial enzymes. Until now, lots of nanomaterials have been explored to mimic various natural enzymes, such as peroxidase, oxidase, catalase, and hydrolase. Particularly, enormous efforts have been devoted to peroxidase-like nanozymes because of their applications in biomedical diagnosis, bioimaging, anti-biofouling coatings, etc.

While breakthroughs in peroxidase-like nanozymes have been made recently, most studies are based on trial-and-error strategies to identify and synthesize suitable peroxidase mimics. The rational strategies for designing effective nanozymes with peroxidase-like activity will be a major step forward in this important and emerging field, because it requires the identification of predictive descriptors – structural characteristics of the nanomaterials that can be used as proxies for their peroxidase-like activities.

To meet this challenge, Wei and co-workers reported that the efficacy of a descriptor based on the occupancy of antibonding eg orbitals (i.e., eg occupancy) to predict and optimize the peroxidase-like activity of perovskite transition metal oxide (TMO) nanomaterials. They identified a volcano relationship between the occupancy and the : namely, perovskite TMOs with an occupancy of around one and zero (or two) exhibited the highest and lowest peroxidase-like activity, respectively. The volcano relationship was further rationalized by density functional theory (DFT) calculations. The occupancy descriptor successfully predicted the peroxidase-like activity of binary TMOs with the same octahedral coordination geometries.

This study provides not only a straightforward and predictive activity descriptor for guiding the search for highly active mimics but also molecular insights for understanding the mechanisms of the nanozyme catalyzed reactions.

Explore further: ROS-scavenging nanozymes for anti-inflammation therapeutics

More information: Xiaoyu Wang et al. eg occupancy as an effective descriptor for the catalytic activity of perovskite oxide-based peroxidase mimics, Nature Communications (2019). DOI: 10.1038/s41467-019-08657-5

Jiangjiexing Wu et al. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II), Chemical Society Reviews (2018). DOI: 10.1039/C8CS00457A

Related Stories

ROS-scavenging nanozymes for anti-inflammation therapeutics

March 5, 2018

The dysregulation of reactive oxygen species (ROS) is linked to inflammatory diseases including rheumatoid arthritis, cardiovascular disease and cancer. Live organisms have therefore evolved a number of highly efficient anti-inflammation ...

Integrated nanozymes for brain chemistry

April 13, 2016

Nanozymes are novel nanomaterials with enzyme mimicking activities, which are superior to natural enzymes and even conventional artificial enzymes. They have attracted considerable attention because they offer the possibility ...

Metallic nanocatalysts imitate the structure of enzymes

November 8, 2018

An international team of researchers has transferred certain structural characteristics of natural enzymes, which ensure particularly high catalytic activity, to metallic nanoparticles. The desired chemical reaction thus ...

New catalyst yields more accurate PSA test

September 16, 2015

Say you've been diagnosed with prostate cancer, the second-leading cause of cancer death in men. You opt for surgery to remove your prostate. Three months later, a prostate surface antigen (PSA) test shows no prostate cells ...

Recommended for you

Machine learning identifies links between world's oceans

March 21, 2019

Oceanographers studying the physics of the global ocean have long found themselves facing a conundrum: Fluid dynamical balances can vary greatly from point to point, rendering it difficult to make global generalizations.

How fluid viscosity affects earthquake intensity

March 21, 2019

Fault zones play a key role in shaping the deformation of the Earth's crust. All of these zones contain fluids, which heavily influence how earthquakes propagate. In an article published today in Nature Communications, Chiara ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.