New 'NanoZymes' use light to kill bacteria

April 4, 2018, RMIT University
A 3-D rendering of live bacteria. Credit: Dr. Chaitali Dekiwadia/ RMIT Microscopy and Microanalysis Facility

Researchers from RMIT University have developed a new artificial enzyme that uses light to kill bacteria.

The could one day be used in the fight against infections, and to keep high-risk public spaces like hospitals free of like E. coli and Golden Staph.

E. coli can cause dysentery and gastroenteritis, while Golden Staph is the major cause of hospital-acquired secondary infections and chronic wound infections.

Made from tiny nanorods - 1000 times smaller than the thickness of the human hair - the "NanoZymes" use visible to create highly that rapidly break down and kill bacteria.

Lead researcher, Professor Vipul Bansal who is an Australian Future Fellow and Director of RMIT's Sir Ian Potter NanoBioSensing Facility, said the new NanoZymes offer a major cutting edge over nature's ability to kill bacteria.

"For a number of years we have been attempting to develop artificial enzymes that can fight bacteria, while also offering opportunities to control bacterial infections using external 'triggers' and 'stimuli'," Bansal said. "Now we have finally cracked it.

"Our NanoZymes are artificial enzymes that combine light with moisture to cause a biochemical reaction that produces OH radicals and breaks down bacteria. Nature's antibacterial activity does not respond to external triggers such as light.

A 3-D rendering of dead bacteria after it has come into contact with the NanoZymes. Credit: Dr. Chaitali Dekiwadia/ RMIT Microscopy and Microanalysis Facility

"We have shown that when shined upon with a flash of white light, the activity of our NanoZymes increases by over 20 times, forming holes in bacterial cells and killing them efficiently.

"This next generation of nanomaterials are likely to offer new opportunities in bacteria free surfaces and controlling spread of infections in public hospitals."

The NanoZymes work in a solution that mimics the fluid in a wound. This solution could be sprayed onto surfaces.

The NanoZymes are also produced as powders to mix with paints, ceramics and other consumer products. This could mean bacteria-free walls and surfaces in hospitals.

Public toilets—places with high levels of bacteria, and in particular E. coli—are also a prime location for the NanoZymes, and the researchers believe their new technology may even have the potential to create self-cleaning toilet bowls.

While the NanoZymes currently use visible light from torches or similar light sources, in the future they could be activated by sunlight.

A microscopic view showing where bacteria has been eaten away by the NanoZymes. Credit: Dr. Chaitali Dekiwadia/ RMIT Microscopy and Microanalysis Facility

The researchers have shown that the NanoZymes work in a lab environment. The team is now evaluating the long-term performance of the NanoZymes in consumer products.

"The next step will be to validate the bacteria killing and wound healing ability of these NanoZymes outside of the lab," Bansal said.

"This NanoZyme technology has huge potential, and we are seeking interest from appropriate industries for joint product development."

The NanoZyme breakthrough has recently been published in the journal ACS Applied Nano Materials.

Explore further: ROS-scavenging nanozymes for anti-inflammation therapeutics

More information: Md. Nurul Karim et al, Visible-Light-Triggered Reactive-Oxygen-Species-Mediated Antibacterial Activity of Peroxidase-Mimic CuO Nanorods, ACS Applied Nano Materials (2018). DOI: 10.1021/acsanm.8b00153

Related Stories

ROS-scavenging nanozymes for anti-inflammation therapeutics

March 5, 2018

The dysregulation of reactive oxygen species (ROS) is linked to inflammatory diseases including rheumatoid arthritis, cardiovascular disease and cancer. Live organisms have therefore evolved a number of highly efficient anti-inflammation ...

Integrated nanozymes for brain chemistry

April 13, 2016

Nanozymes are novel nanomaterials with enzyme mimicking activities, which are superior to natural enzymes and even conventional artificial enzymes. They have attracted considerable attention because they offer the possibility ...

Dragonfly-inspired nano coating kills bacteria upon contact

March 28, 2018

Studies have shown that the wings of dragonflies and cicadas prevent bacterial growth due to their natural structure. The surfaces of their wings are covered in nanopillars making them look like a bed of nails. When bacteria ...

Human trials target superbugs

March 6, 2018

The first human trials of a new approach to fight superbugs by starving them of iron are underway in South Australia.

Natural sniper kills hospital bacterium

March 20, 2018

Bacteria produce proteins to take out specific competitors. One of these proteins can kill the hospital bacterium pseudomonas aeruginosa. Microbial geneticists at KU Leuven, Belgium, have unraveled how this protein launches ...

Recommended for you

Atomic-scale ping-pong

June 20, 2018

New experiments by researchers at the National Graphene Institute at the University of Manchester have shed more light on the gas flow through tiny, angstrom-sized channels with atomically flat walls.

Chameleon-inspired nanolaser changes colors

June 20, 2018

As a chameleon shifts its color from turquoise to pink to orange to green, nature's design principles are at play. Complex nano-mechanics are quietly and effortlessly working to camouflage the lizard's skin to match its environment.

Method could help boost large scale production of graphene

June 19, 2018

The measure by which any conductor is judged is how easily, and speedily, electrons can move through it. On this point, graphene is one of the most promising materials for a breathtaking array of applications. However, its ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.