'Origami' diagnostic device offers affordable malaria diagnoses

February 20, 2019, University of Glasgow
Paper-folding steps for fluidic manipulation. Schematics of how the paper strip in the microfluidic device is folded for each step. The arrows indicate the direction of folding. Credit: Niall P. Macdonald (Dublin City University, Dublin)

Simple folded sheets of waxed paper could help bring affordable, reliable field tests for diseases such as malaria to remote parts of the developing world, scientists say.

In a new paper titled "Paper-based Microfluidics for Diagnosing Malaria in Low Resource Rural Environments," published in the journal Proceedings of the National Academy of Sciences, researchers from universities in Scotland and China, working together with the Ministry of Health in Uganda, describe for the first time how origami-style folded paper, prepared with a printer and a hot plate, has helped detect with 98% sensitivity in infected participants from two in Uganda.

Malaria is one of the world's leading causes of illness and death, affecting more than 219 million people in 90 countries around the globe, and killing 435,000 people in 2017 alone.

A significant issue for arresting and reversing the spread of the disease is diagnosing it in people who are infected but who do not display any symptoms, a problem which can only be addressed by widespread field tests. However, current tests, which rely on a process known as (PCR), can only be carried out under laboratory conditions, making them unsuited for use in remote locations.

The team, led by researchers from the University of Glasgow in partnership with Shanghai Jiao Tong University and the Ministry of Health in Uganda, have developed a new approach to diagnostics. It uses paper to prepare patient samples for a different type of detection process known as loop-mediated isothermal amplification, or LAMP, which is more portable and better-suited for use in the field.

The origami platform uses a commercially-available printer to coat the paper in patterns made from water-resistant wax, which is then melted on a hotplate, bonding the wax to the paper.

A taken from a patient via fingerprick is placed on in a channel in the wax, then the paper is folded, directing the sample into a narrow channel and then three small chambers which the LAMP machine uses to test the samples' DNA for evidence of Plasmodium falciparum, the mosquito-borne parasitic species which causes malaria. The test can be completed on-site in less than 50 minutes.

Professor Jonathan Cooper of the University of Glasgow's School of Engineering is the paper's lead author. He said: "We tested our approach with volunteers from two primary schools in the Mayuge and Apac districts in Uganda. We took samples from 67 schoolchildren, under strict ethical approval, and ran in the field using optical microscopy techniques, the gold standard method in these low-resource settings, a commercial rapid diagnostic procedure known as a lateral flow test and our LAMP approach. We also carried out PCR back in Glasgow, on samples collected in the field.

"Our diagnostic approach correctly diagnosed malaria in 98% of the infected samples we tested, markedly more sensitive than both the microscopy and lateral flow tests, which delivered 86% and 83% respectively.

"It's a very encouraging result which suggests that our paper-based LAMP diagnostics could help deliver better, faster, more effective testing for malaria infections in areas which are currently underserved by available diagnostic techniques."

Dr. Julien Reboud of the University of Glasgow's School of Engineering played a key role in developing the new diagnostic technique.

Dr. Reboud said: "These are challenging environments for any of this type, with no access to the kinds of refrigeration, special equipment and training that more traditional diagnostic procedures require, so it's very encouraging that the diagnostic techniques we've developed have proven to be so sensitive and reliable.

"With malaria infections on the increase in 13 affected countries according to a World Health Organisation report released last year, it's vital that new forms of diagnosis reach the people who need them, and we're committed to developing our approach to -based LAMP diagnostics further after this encouraging study."

Explore further: 'Origami' diagnostics breakthrough set to benefit developing-world farmers

More information: Julien Reboud et al. Paper-based microfluidics for DNA diagnostics of malaria in low resource underserved rural communities, Proceedings of the National Academy of Sciences (2019). DOI: 10.1073/pnas.1812296116

Related Stories

Recommended for you

Physicists discover new class of pentaquarks

March 26, 2019

Tomasz Skwarnicki, professor of physics in the College of Arts and Sciences at Syracuse University, has uncovered new information about a class of particles called pentaquarks. His findings could lead to a new understanding ...

Study finds people who feed birds impact conservation

March 26, 2019

People in many parts of the world feed birds in their backyards, often due to a desire to help wildlife or to connect with nature. In the United States alone, over 57 million households in the feed backyard birds, spending ...

Matter waves and quantum splinters

March 25, 2019

Physicists in the United States, Austria and Brazil have shown that shaking ultracold Bose-Einstein condensates (BECs) can cause them to either divide into uniform segments or shatter into unpredictable splinters, depending ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Thorium Boy
not rated yet Feb 20, 2019
This has nothing to do with Japanese origami and no one is going to use this for disease diagnosis.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.