New insights into plant cell organelle and molecule movement

February 4, 2019 by Igor Houwat, Luciana Renna, Michigan State University
Credit: Rémi Walle

Michigan State University scientists have identified a new protein, called TGNap1 (TGN associated protein 1), that they found at a poorly understood plant cell organelle, the Trans-Golgi Network (TGN).

The TGN is at the intersection of pathways that control molecule traffic into (endocytosis) and out of (exocytosis) the plant cell. The TGN and its network of supporting expand iconproteins are essential to proper metabolism many organisms. But their function remains a mystery to scientists.

We do know that the TGN contributes to building up expand iconplant biomass, which is important for plant-based products, like fuels, food, and animal feed. In humans, TGN defects cause neurodegenerative diseases and hereditary neuromuscular disorders.

The new study provides insights into how the TGNap1 supports the TGN in structure and function. It then describes how the protein assists with TGN movement, through an interaction with microtubules, which impacts the TGN's biogenesis. The research is published in Nature Communications.

Plant mutants defective in trafficking

Luciana Renna, a research associate in the lab of Dr. Federica Brandizzi, identified TGNap1 in a plant mutant defective for expand iconsecretion.

"In the absence of the protein, a subclass of TGN seems to mature poorly during its formative stages," Luciana says. "The TGN grows larger and has an aberrant morphology. As a result, we see defects in one of its functions, secretion. In other words, cargo that should be delivered outside of the cell is partially retained in the endoplasmic reticulum, which is part of the exocytic secretion pathway. This defect in secretion leads to malforming of this organelle as well."

The mutant plant is also defective in endocytosis, the opposite process that allows cells to import molecules.

"It is important to note that TGNap1 only targets that specific subclass of TGN," Luciana adds. "This supports evidence that plant cells contain different types of TGN, where each subpopulation might specialize in different functions. But scientists have found it difficult to classify and characterize these subpopulations."

Microtubules: A new model of organelle movement

The N-terminal of TGNap1 has a domain that links it to the TGN and binds it to microtubules, which are like railroad tracks that organelles use to move inside a cell.

"We think the microtubules position the TGN in the right places," Luciana says. "The protein connects both components (see model above). Without it, the link is gone, and movement is hampered. We think this disruption causes the defects we observed in our mutant."

Microtubule-driven movement is a new line of thought in plant science. Scientists have tended to think that movement relies on another component called actin.

Moving forward, the researchers will further study the protein. Luciana says that the trafficking defects in the absence of TGNap1 were partial. That hints at a larger picture including more factors that impact the TGN. Or, perhaps the protein works under specific developmental conditions.

"We are excited to have found this new component that ties together TGN movement, biogenesis, and function," Luciana says. "We are showing that various processes, like membrane transport, cytoskeleton interactions, membrane architecture, and dynamics are interdependent. Our field has tended to study each process in isolation."

Explore further: Two plant cell 'hotspots' tell the cell where to import its resources

More information: Luciana Renna et al. TGNap1 is required for microtubule-dependent homeostasis of a subpopulation of the plant trans-Golgi network, Nature Communications (2018). DOI: 10.1038/s41467-018-07662-4

Related Stories

Cell architecture: Finding common ground

October 16, 2014

When it comes to cellular architecture, function follows form. Plant cells contain a dynamic cytoskeleton which is responsible for directing cell growth, development, movement, and division. So over time, changes in the cytoskeleton ...

Keeping our cells stable: A closer look at microtubules

October 1, 2018

Microtubules help to regulate cell structure. A group of Japanese researchers have used cryo-electron microscopy to shed light on how a certain protein keeps microtubules stable and regulates microtubule-based transport within ...

Recommended for you

Where is the universe hiding its missing mass?

February 15, 2019

Astronomers have spent decades looking for something that sounds like it would be hard to miss: about a third of the "normal" matter in the Universe. New results from NASA's Chandra X-ray Observatory may have helped them ...

What rising seas mean for local economies

February 15, 2019

Impacts from climate change are not always easy to see. But for many local businesses in coastal communities across the United States, the evidence is right outside their doors—or in their parking lots.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.