Nanoglue can make composites several times tougher during dynamic loading

December 10, 2018, Rensselaer Polytechnic Institute
Illustrations of frequency-dependent toughening in a polymer-metal-nanoglue-ceramic composite. Credit: Rensselaer Polytechnic Institute

In a discovery that could pave the way for new materials and applications, materials scientists at Rensselaer Polytechnic Institute have found that oscillating loads at certain frequencies can lead to several-fold increases in the strength of composites with an interface that is modified by a molecular layer of "nanoglue."

A newly published article in Nature Communications reports the unexpected discovery of the effects of loading frequency on the fracture energy of a multilayer composite involving a "nanoglue," the use of which was also pioneered at Rensselaer.

"Unearthing, understanding, and manipulating nanoscale phenomena at interfaces during dynamic stimuli is a key to designing with novel responses for applications," said Ganpati Ramanath, the John Tod Horton Professor of Materials Science and Engineering at Rensselaer and the lead author on the study. "Our work demonstrates that introducing a nanoglue layer at an interface of a layered composite can lead to large mechanical toughening at certain loading frequencies."

Ramanath and his team of collaborators found that, at certain loading frequencies, the energy required to fracture a nanoglue-modified polymer-metal-ceramic composite tripled, and exceeded the static loading fracture energy. This behavior is unexpected and significant because fracture energy is typically lower during cyclic loading than it is during static loading. Such -dependent toughening was observed only when a nanoglue layer was used to bond the metal and the ceramic.

The results also show that while the nanolayer is necessary for toughening to occur, the and the extent of toughening are primarily determined by the mechanical properties of the polymer in the composite. Specifically, the nanoglue facilitates load transfer across the metal-ceramic interface and dissipates energy in the polymer through plastic deformation, leading to an increase in fracture energy.

"Our discovery opens up an entirely new set of possibilities to design composites with novel responses using different combinations of polymers and interfacial nanolayers. For example, we could realize a completely new class of smart composites that can significantly toughen, or perhaps even self-destruct, at certain frequencies," Ramanath said.

"Our findings of beneficiary couplings between the nanoglue effect and the properties of a constituent in a during cyclic loading opens a new paradigm in reliability engineering," said co-author Michael Lane, the Billie Sue Hurst Professor of Chemistry at Emory & Henry College. "Manipulating the coupling can actually make composites more robust under just the loading conditions we have traditionally tried to avoid, and hence, can vastly expand the scope and improve the performance of composites in applications."

Explore further: Multifunctional dream ceramic matrix composites are born

More information: Matthew Kwan et al. Frequency-tunable toughening in a polymer-metal-ceramic stack using an interfacial molecular nanolayer, Nature Communications (2018). DOI: 10.1038/s41467-018-07614-y

Related Stories

Multifunctional dream ceramic matrix composites are born

December 6, 2018

Researchers at Osaka University have produced composites consisting of alumina (AI2O3) ceramics and titanium (Ti), namely AI2O3/Ti composites. They designed a percolation structure for forming a continuous conduction pathway ...

Boosting heat transfer with nanoglue

December 4, 2012

(Phys.org)—A team of interdisciplinary researchers at Rensselaer Polytechnic Institute has developed a new method for significantly increasing the heat transfer rate across two different materials. Results of the team's ...

New fracture resistance mechanisms provided by graphene

April 13, 2011

A team of researchers from the University of Arizona and Rensselaer Polytechnic Institute have increased the toughness of ceramic composites by using graphene reinforcements that enable new fracture resistance mechanisms ...

Nature's toughest substances decoded

December 4, 2017

How a material breaks may be the most important property to consider when designing layered composites that mimic those found in nature. A method by Rice University engineers decodes the interactions between materials and ...

Flexible, highly efficient multimodal energy harvesting

May 21, 2018

A 10-fold increase in the ability to harvest mechanical and thermal energy over standard piezoelectric composites may be possible using a piezoelectric ceramic foam supported by a flexible polymer support, according to Penn ...

New nanoglue is thin and supersticky

March 5, 2012

Engineers at the University of California, Davis, have invented a superthin "nanoglue" that could be used in new-generation microchip fabrication.

Recommended for you

Materials chemists tap body heat to power 'smart garments'

January 22, 2019

Many wearable biosensors, data transmitters and similar tech advances for personalized health monitoring have now been "creatively miniaturized," says materials chemist Trisha Andrew at the University of Massachusetts Amherst, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.