New nanoglue is thin and supersticky

March 5, 2012

Engineers at the University of California, Davis, have invented a superthin "nanoglue" that could be used in new-generation microchip fabrication.

"The material itself (say, semiconductor wafers) would break before the glue peels off," said Tingrui Pan, professor of biomedical engineering. He and his fellow researchers have filed a provisional patent.

Conventional glues form a thick layer between two surfaces. Pan's nanoglue, which conducts heat and can be printed, or applied, in patterns, forms a layer the thickness of only a few molecules.

The nanoglue is based on a transparent, called polydimethylsiloxane, or PDMS, which, when peeled off a smooth surface usually leaves behind an ultrathin, sticky residue that researchers had mostly regarded as a nuisance.

Pan and his colleagues realized that this residue could instead be used as glue, and enhanced its bonding properties by treating the residue surface with oxygen.

The nanoglue could be used to stick into a stack to make new types of multilayered . Pan said he thinks it could also be used for home applications — for example, as double-sided tape or for sticking objects to tiles. The glue only works on smooth surfaces and can be removed with heat treatment.

The journal Advanced Materials published a paper on the work in December.

Explore further: Smart Contact Lenses

Related Stories

Smart Contact Lenses

July 30, 2008

"Smart" contact lenses that measure pressure within the eye and dispense medication accordingly could be made possible using a new material developed by biomedical engineers at UC Davis.

Glass that cleans itself

December 7, 2011

Eyeglasses need never again to be cleaned, and dirty windscreens are a thing of the past! Researchers at the Max Planck Institute for Polymer Research in Mainz and the Technical University Darmstadt are now much closer to ...

Recommended for you

Graphene photodetector enhanced by fractal golden 'snowflake'

January 16, 2017

(Phys.org)—Researchers have found that a snowflake-like fractal design, in which the same pattern repeats at smaller and smaller scales, can increase graphene's inherently low optical absorption. The results lead to graphene ...

Nanoscale view of energy storage

January 16, 2017

In a lab 18 feet below the Engineering Quad of Stanford University, researchers in the Dionne lab camped out with one of the most advanced microscopes in the world to capture an unimaginably small reaction.

Scientists create first 2-D electride

January 11, 2017

(Phys.org)—Researchers have brought electrides into the nanoregime by synthesizing the first 2D electride material. Electrides are ionic compounds, which are made of negative and positive ions. But in electrides, the negative ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

QQBoss
not rated yet Mar 05, 2012
"The nanoglue could be used to stick silicon wafers into a stack to make new types of multilayered computer chips." needs to be reconciled with "...and can be removed with heat treatment."

If the temperature of the needed heat treatment is anywhere close to 125-150dC (even if it is higher for rapid release, a lower temperature may also release, just more slowly), then this particular usage is a non-starter.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.