Researchers pioneer machine learning to speed chemical discoveries, reduce waste

December 13, 2018, NYU Tandon School of Engineering
Thanks to a National Science Foundation grant, NYU Tandon School of Engineering students built the world's first artificially intelligent microreactor. The equipment allows scientists to study reactions using just a few drops of fluid instead of perhaps 100 liters of chemicals, thereby preventing chemical waste and saving considerable energy. Credit: NYU Tandon

Machine learning algorithms can predict stock market fluctuations, control complex manufacturing processes, enable navigation for robots and driverless vehicles, and much more.

Now, researchers at the NYU Tandon School of Engineering are tapping a new set of capabilities in this field of artificial intelligence, combining with infrared thermal imaging to control and interpret chemical reactions with precision and speed that far outpace conventional methods. More innovative still is the fact that this technique was developed and tested on novel microreactors that allow chemical discoveries to take place quickly and with far less environmental waste than standard large-scale reactions.

"This system can reduce the decision-making process about certain chemical manufacturing processes from one year to a matter of weeks, saving tons of chemical waste and energy in the process," said Ryan Hartman, an assistant professor of chemical and biomolecular engineering at NYU Tandon and lead author of a paper detailing the method in the journal Computers & Chemical Engineering.

Last year, Hartman introduced a new class of miniaturized that brings reactions traditionally carried out in large-batch reactors with up to 100 liters of chemicals down to the microscale, using just microliters of fluid—a few small drops. These microfluidic reactors are useful for analyzing catalysts for manufacturing or discovering compounds and studying interactions in drug development, and they promise to reduce waste, speed innovation, and improve the safety of chemical research.

Hartman and his team have increased the utility of these reactors by pairing them with two additional technologies: infrared thermography, an imaging technique that captures a thermal map displaying changes in heat during a chemical reaction, and supervised machine learning, a discipline of artificial intelligence wherein an algorithm learns to interpret data based on inputs selected by researchers controlling the experiments.

Paired together, they allow researchers to capture changes in during —as indicated by color changes on the thermal image—and to interpret these changes quickly. Due to the non-contact nature of infrared thermography, the technique can even be utilized for reactions that operate at extreme temperatures or in extreme conditions, such as a bioreactor that requires a sterile field.

The is the first to train an artificial neural network to control and interpret infrared thermal images of a thermoelectrically cooled microfluidic device. The potential impacts on both innovation and sustainability are significant. Large chemical companies may screen hundreds of catalysts while developing new polymers, for example, and each reaction can require more than 100 liters of chemicals and 24 hours or longer. Screening that number of catalysts using current laboratory processes can take a year. Using Hartman's approach, the entire process can be accomplished in weeks, with exponentially less waste and energy usage. Hartman estimates that a single industrial hood used to control fumes during large-scale testing uses as much energy per year as the average U.S. home.

Explore further: Green production of chemicals for industry

More information: Benjamin A. Rizkin et al, Artificial Neural Network control of thermoelectrically-cooled microfluidics using computer vision based on IR thermography, Computers & Chemical Engineering (2018). DOI: 10.1016/j.compchemeng.2018.11.016

Related Stories

Green production of chemicals for industry

December 12, 2018

Industry consumes large quantities of crude oil to produce basic substances for drugs, cosmetics, plastics, or food. However, these processes consume a lot of energy and produce waste. Biological processes with enzymes are ...

Microdroplet reactors mimic living systems

January 20, 2016

"Living systems are achieved by complex chemical reaction dynamics far from equilibrium, such as gene expression networks, signalling networks, metabolic circuits and neural networks," explains Masahiro Takinoue at Tokyo ...

Recommended for you

The solid Earth breathes

March 26, 2019

The solid Earth breathes as volcanoes "exhale" gases like carbon dioxide (CO2)—which are essential in regulating global climate—while carbon ultimately from CO2 returns into the deep Earth when oceanic tectonic plates ...

What happened before the Big Bang?

March 26, 2019

A team of scientists has proposed a powerful new test for inflation, the theory that the universe dramatically expanded in size in a fleeting fraction of a second right after the Big Bang. Their goal is to give insight into ...

Cellular microRNA detection with miRacles

March 26, 2019

MicroRNAs (miRNAs) are short noncoding regulatory RNAs that can repress gene expression post-transcriptionally and are therefore increasingly used as biomarkers of disease. Detecting miRNAs can be arduous and expensive as ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.