Elegant trick improves single-cell RNA sequencing

December 20, 2018 by Tom Fleischman, Cornell University
A hairpin loop from a pre-mRNA. Highlighted are the nucleobases (green) and the ribose-phosphate backbone (blue). Note that this is a single strand of RNA that folds back upon itself. Credit: Vossman/ Wikipedia

Droplet microfluidics has revolutionized single-cell RNA sequencing, offering a low-cost, high-throughput method for single-cell genomics. However, this method has been limited in its ability to capture complete RNA transcription information.

Researchers at Cornell—led by Iwijn De Vlaminck, assistant professor in the Meinig School of Biomedical Engineering—have come up with an elegant, low-cost method that solves that problem. And not only does it push forward, it may allow for new avenues for studies of infection and immune biology.

"Simultaneous Multiplexed Amplicon Sequencing and Transcriptome Profiling in Single Cells" was published recently in Nature Methods. Postdoctoral researcher Mridusmita Saikia and doctoral student Philip Burnham, both of the De Vlaminck lab, are lead authors.

Also contributing were Charles Danko, assistant professor at the Baker Institute for Animal Health in the College of Veterinary Medicine, and John Parker, associate professor of virology in the Baker Institute.

In 2015, from Harvard University and the Massachusetts Institute of Technology introduced Drop-seq, a method to simultaneously and efficiently characterize the identities of thousands of cells, using nanoliter-scale droplets and attaching a unique identifier to each cell's RNA.

"Those technologies are very popular because they've lowered the cost of these types of analyses and sort of democratized them, made them very cheap and easy to do for many labs," De Vlaminck said.

The drawback, however, is that they can only identify a certain type of messenger RNA (mRNA) molecule, which limits the potential scope of analyses. Messenger RNA carries the genetic information copied from DNA in the process of translation.

De Vlaminck and his collaborators have come up with a simple, inexpensive twist to the existing Drop-seq protocol, and call their new method DART-seq (droplet-assisted RNA targeting by single-cell sequencing).

In Drop-seq, individual cells are encapsulated with labeled microparticles that initiate reverse transcription of cellular mRNA. The De Vlaminck group devised an effective to enzymatically customize the beads prior to performing conventional Drop-seq analysis, which allows for the recovery and analysis of a greater variety of molecules than are available through Drop-seq sequencing.

In addition, this technology can identify virus-infected cells, and quantify viral and host gene expression, thus enabling examination of the host response to infection at single-cell level.

"A single virus species can be very diverse, and that diversity permits them to do extraordinary things," Burnham said. "So if you can zoom down to the single-cell level, you can actually see how minor changes in the virus cause a potentially huge change in how the cell reacts to that small mutation."

Saikia, who has a dual appointment with the veterinary college, thinks DART-seq will also help inform new approaches to cancer therapy.

"Cancer are a very heterogeneous population," she said, "and when you don't look at them at the single-cell level, you often miss important information. So our technology also allows that."

Explore further: Analyzing single-cell landscapes

More information: Mridusmita Saikia et al, Simultaneous multiplexed amplicon sequencing and transcriptome profiling in single cells, Nature Methods (2018). DOI: 10.1038/s41592-018-0259-9

Related Stories

Analyzing single-cell landscapes

December 3, 2018

Single-cell RNA sequencing is a powerful tool for studying cellular diversity, for example in cancer where varied tumor cell types determine diagnosis, prognosis and response to therapy. Single-cell technologies generate ...

Single-nucleus RNA sequencing, droplet by droplet

August 28, 2017

Last year Broad researchers described a single-nucleus RNA sequencing method called sNuc-Seq. This system enabled researchers to study the gene expression profiles of difficult-to-isolate cell types as well as cells from ...

Knowing exactly what genes are saying – and where

December 3, 2018

Scientists can now discover how the fine details of gene activity differ from one cell type to another in a tissue sample, thanks to a technique invented by Weill Cornell Medicine researchers.

Recommended for you

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

Paleontologists report world's biggest Tyrannosaurus rex

March 22, 2019

University of Alberta paleontologists have just reported the world's biggest Tyrannosaurus rex and the largest dinosaur skeleton ever found in Canada. The 13-metre-long T. rex, nicknamed "Scotty," lived in prehistoric Saskatchewan ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.