Scientists develop new system to study emerging tickborne disease

November 30, 2018 by Ziba Kashef, Yale University
Credit: stock.adobe.com

Tickborne diseases are on the rise, and one in particular is emerging in the United States and Canada. Human babesiosis is an infection that can cause a range of symptoms and even death. Little is known about one of the parasites that cause human babesiosis but a team of Yale-led researchers have developed a novel system for studying it. Their research holds promise of leading to more effective diagnosis and better treatments, they said.

While scientists have studied the parasite—Babesia duncani—in mice and hamsters, the research has been limited because it's expensive and the animals often succumb to the disease. To overcome these challenges, the developed a way to study the parasite in . They transferred the from hamster red blood cells to human red blood cells cultured in vitro. This first-ever, continuous in vitro system of Babesia duncani allowed them to examine the parasite in human red cells over time and study its biology.

The authors reported several key findings. They confirmed that Babesia duncani can replicate rapidly in human , doubling in less than 24 hours. They also tested four current drugs that are used to treat the disease and found that the parasite has low susceptibility to these therapies.

The study is "a tipping point in the research on this organism," said senior author Choukri Ben Mamoun, associate professor of medicine. "It's going to change the way we study it." In addition to confirming that the current therapies are not optimal, the in vitro culture system allows the researchers to develop new diagnostic tests and search for more effective therapies.

"We believe that this new finding is going to stimulate the research and drive it exponentially," he said.

Read the full paper, co-authored by Jose Thekkiniath, published in the Journal of Biological Chemistry.

Explore further: First screening tests approved for tickborne parasite

More information: Amanah Abraham et al. Establishment of a continuous in vitro culture of Babesia duncani in human erythrocytes reveals unusually high tolerance to recommended therapies, Journal of Biological Chemistry (2018). DOI: 10.1074/jbc.AC118.005771

Related Stories

Combination therapy cures tick-borne illness in mice

June 6, 2016

A novel combination therapy cures an emerging infectious disease, babesiosis, which is transmitted by the same ticks that transmit the agents of Lyme disease, said Yale researchers. This "radical" therapy not only clears ...

Designer molecule kills malarial parasites

July 24, 2018

A research team from ANU and The University of Queensland has designed and made a molecule derived from a human protein that kills the parasite which causes malaria.

Recommended for you

Field-responsive mechanical metamaterials (FRMMs)

December 11, 2018

In a recent study published in Science Advances, materials scientists Julie A. Jackson and colleagues presented a new class of materials architecture called field-responsive mechanical metamaterials (FRMM). The FRMMs exhibit ...

Researchers develop smartphone-based ovulation test

December 11, 2018

Investigators from Brigham and Women's Hospital are developing an automated, low-cost tool to predict a woman's ovulation and aid in family planning. Capitalizing on advancements in several areas, including microfluidics, ...

CRISPR method for conditional gene regulation

December 11, 2018

A team of engineers at the University of Delaware has developed a method to use CRISPR/Cas9 technology to set off a cascade of activities in cells, a phenomenon known as conditional gene regulation. Their method, described ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.