Jumpin' droplets! Researchers seek to improve efficiency of condensers

November 28, 2018 by Anne Manning, Colorado State University
This illustration shows how a ridge architecture and superomniphobic surface causes condensed droplets to jump, rather than coalesce. Credit: Kota Lab/Colorado State University

Hold a cold drink on a hot day, and watch as small droplets form on the glass, eventually coalescing into a layer of moisture (and prompting you to reach for a coaster).

This basic physical process, condensation, is what refrigerators and air conditioners use to remove heat from vapor by turning it into a liquid. Just like the cold glass, the surfaces of metal condensers form thin layers of moisture as they work.

And that's a problem. The liquid layer acts as a thermally resistant barrier between the warm vapor and the cold condenser , decreasing the condenser's heat transfer efficiency. Ideally, the on the condenser, instead of coalescing, would simply bead up and move away, making way for more vapor to contact the condenser and turn into liquid.

Materials scientists at Colorado State University have spent time thinking about this problem. They've published the fundamental physics of a possible solution in the journal Science Advances. Their new strategy could potentially increase the efficiency of condensers, used in many domestic and industrial products.

A team led by Arun Kota, assistant professor in and the School of Biomedical Engineering, has figured out how to keep condensed droplets from coalescing into a film, and to make the droplets jump high enough to move away from the condenser surface.

Self-propulsion of two droplets of water on a superomniphobic surface without a ridge, and with a ridge. Credit: Colorado State University
"We believe that our strategy has the potential to enable next-generation condensers with improved efficiency," Kota said. "Our strategy is simple, power-free and scalable." The experiments and were carried out by the paper's co-first authors: CSU graduate student Hamed Vahabi and postdoctoral researcher Wei Wang.

Their solution is a combination of creativity, chemistry and physics, along with Kota's lab's extensive research in "superomniphobic" surfaces that repel many different kinds of liquids. The researchers worked out the physics of using a superomniphobic surface with knife-like ridges to form these jumping droplets.

When droplets coalesce on these superomniphobic ridges, the ridge architecture causes the new, larger droplet to jump away with significantly higher kinetic energy compared to surfaces with no ridge architecture. The researchers envision that condensers dotted with such superomniphobic ridges can remove condensed droplets more efficiently, leading to higher heat transfer efficiency.

Other researchers have demonstrated the ability to make droplets jump this way, but the CSU work is set apart by combining the superomniphobic surface with the specific ridge architecture. Furthermore, they made the jumping-droplet phenomenon work with a wide range of liquids, including those with low surface tensions and high viscosities. They've also shown that the concept works at many sizes, from macroscopic down to micron length scales and potentially even sub-micron length scales.

Explore further: Surface tension can sort droplets for biomedical applications

More information: Hamed Vahabi et al, Coalescence-induced jumping of droplets on superomniphobic surfaces with macrotexture, Science Advances (2018). DOI: 10.1126/sciadv.aau3488

Related Stories

Droplets get a charge out of jumping

October 2, 2013

In a completely unexpected finding, MIT researchers have discovered that tiny water droplets that form on a superhydrophobic surface, and then "jump" away from that surface, carry an electric charge. The finding could lead ...

Superomniphobic tape adheres to any surface

October 20, 2016

Arun Kota, assistant professor of mechanical engineering at Colorado State University, has made a superomniphobic tape that, when adhered to any surface, gives the surface liquid-repelling properties. This recent breakthrough ...

Electric fields can push droplets from surfaces

December 20, 2013

Researchers at MIT have followed up on their discovery that droplets of water acquire an electric charge when jumping from certain condenser surfaces by finding a way to make use of that effect: They found that by applying ...

A new approach to liquid-repelling surfaces

November 1, 2018

"Omniphobic" might sound like a way to describe someone who is afraid of everything, but it actually refers to a special type of surface that repels virtually any liquid. Such surfaces could potentially be used in everything ...

Recommended for you

Physicists reveal why matter dominates universe

March 21, 2019

Physicists in the College of Arts and Sciences at Syracuse University have confirmed that matter and antimatter decay differently for elementary particles containing charmed quarks.

ATLAS experiment observes light scattering off light

March 20, 2019

Light-by-light scattering is a very rare phenomenon in which two photons interact, producing another pair of photons. This process was among the earliest predictions of quantum electrodynamics (QED), the quantum theory of ...

How heavy elements come about in the universe

March 19, 2019

Heavy elements are produced during stellar explosion or on the surfaces of neutron stars through the capture of hydrogen nuclei (protons). This occurs at extremely high temperatures, but at relatively low energies. An international ...

Trembling aspen leaves could save future Mars rovers

March 18, 2019

Researchers at the University of Warwick have been inspired by the unique movement of trembling aspen leaves, to devise an energy harvesting mechanism that could power weather sensors in hostile environments and could even ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.