Electrons inside of some ceramic crystals appear to dissipate in a familiar way

November 20, 2018 by Bob Yirka, Phys.org report
a, Resistivity of our Bi2212 film with p = 0.23 as a function of magnetic field, at the indicated temperatures. The value of ρ at H = 55 T is plotted versus T in Supplementary Fig. 3b of Supplementary section 3. b, Resistivity as a function of temperature, at H = 0 (blue). The red diamonds are high-field data extrapolated to zero field by fitting ρ(H) to a + bH2. The error bars are estimated by the difference [ρ(H = 55 T) − ρ(H2 → 0)]/2. The dashed line is a linear fit to the red diamonds. c, Hall coefficient of our Bi2212 film as a function of magnetic field, at the indicated temperatures. The value of RH at H = 55 T is plotted versus T in d. d, Hall coefficient as a function of temperature for three cuprates, plotted as eRH/V, where e is the electron charge and V is the volume per Cu atom: Bi2212 at p = 0.23 (red curve, H = 9 T; red dots, H = 55 T, c); Nd-LSCO at p = 0.24 (blue, H = 16 T; from ref. 11); PCCO at x = 0.17 (green, H = 15 T, right axis; from ref. 41). The red dashed line is a guide to the eye. Credit: Nature Physics (2018). DOI: 10.1038/s41567-018-0334-2

A team of researchers from Canada, France and Poland has found that electrons inside of some ceramic crystals appear to dissipate in a surprising, yet familiar way—possibly a clue to the reason for the odd behavior of "strange metals." In their paper published in the journal Nature Physics, the researchers describe their experiments to better understand why strange metals behave the way they do.

The strange metals referred to in the study are also known as cuprates—materials that at are poor conductors of electricity, but at very cold temperatures are superconductors. Their strangeness comes about as they are cooling, just prior to becoming superconductive—they enter a state in which inside of them appear to dissipate energy as fast as theory suggests is possible. And no one has been able to explain how or why this happens. Equally strange, the strangeness of the materials appears to be associated with the Planck constant.

To learn more about the behavior of strange metals when they enter their strange state, the researchers subjected samples of the Bi2Sr2CaCu2 O8+δ to both high and low temperatures while measuring its resistance and other characteristics. They report evidence that bolsters theories suggesting that electrons in such organize themselves into a where the properties of each are dependent on the properties of all the others—a so called "maximally scrambled" state. Put another way, they found evidence that all of the electrons in the strange become entangled with all of the others. The researchers suggest such a state would surely explain how electrons in the material are able to scatter as fast as theory allows—and why their resistance would be dependent on Planck's constant.

The results add credence to work by other theorists who applied the theory of holographic duality to look at the behavior of cuprates—the theory that allows for connecting scrambled quantum particles mathematically. It is currently used by theorists to explain the nature of black holes that exist in a higher dimension.

Explore further: A material already known for its unique behavior is found to carry current in a way never before observed

More information: A. Legros et al. Universal T-linear resistivity and Planckian dissipation in overdoped cuprates, Nature Physics (2018). DOI: 10.1038/s41567-018-0334-2

Related Stories

Strings attached to future high temperature superconductivity

February 12, 2015

The behaviour of strongly correlated electron systems, such as high temperature superconductors, defies explanation in the language of ordinary quantum theory. A seemingly unrelated area of physics, string theory, might give ...

The bizarre world of topological materials

June 27, 2018

In 2016, three physicists received the Nobel Prize for using the mathematical concept of "topology" to explain the strange behavior of certain materials—for example, those that are insulators in their bulk but conductors ...

Recommended for you

ATLAS experiment observes light scattering off light

March 20, 2019

Light-by-light scattering is a very rare phenomenon in which two photons interact, producing another pair of photons. This process was among the earliest predictions of quantum electrodynamics (QED), the quantum theory of ...

How heavy elements come about in the universe

March 19, 2019

Heavy elements are produced during stellar explosion or on the surfaces of neutron stars through the capture of hydrogen nuclei (protons). This occurs at extremely high temperatures, but at relatively low energies. An international ...

Trembling aspen leaves could save future Mars rovers

March 18, 2019

Researchers at the University of Warwick have been inspired by the unique movement of trembling aspen leaves, to devise an energy harvesting mechanism that could power weather sensors in hostile environments and could even ...

Quantum sensing method measures minuscule magnetic fields

March 15, 2019

A new way of measuring atomic-scale magnetic fields with great precision, not only up and down but sideways as well, has been developed by researchers at MIT. The new tool could be useful in applications as diverse as mapping ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.