Nanoparticles form supercrystals under pressure

September 7, 2018, Diamond Light Source
Nanoparticles form supercrystals under pressure
ig. 1: 2D SAXS patterns of PEG-coated gold nanoparticles (AuNP) with 2 M CsCl added at different pressures. Left: 1 bar; Middle: 4000 bar; Right: After pressure release at 1 bar. The scheme on top illustrates the structural assembly of the coated AuNPs at different pressures: At 1 bar, the particle ensemble is in an amorphous, liquid state. Upon reaching the crystallization pressure, face-centred cubic crystallites are formed by the AuNPs. After pressure release, the AuNPs return to the liquid state. Credit: Diamond Light Source

Self-assembly and crystallisation of nanoparticles (NPs) is generally a complex process, based on the evaporation or precipitation of NP-building blocks. Obtaining high-quality supercrystals is slow, dependent on forming and maintaining homogenous crystallisation conditions. Recent studies have used applied pressure as a homogenous method to induce various structural transformations and phase transitions in pre-ordered nanoparticle assemblies. Now, in work recently published in the Journal of Physical Chemistry Letters, a team of German researchers studying solutions of gold nanoparticles coated with poly(ethylene glycol)- (PEG-) based ligands has discovered that supercrystals can be induced to form rapidly within the whole suspension.

Over the last few decades, there has been considerable interest in the formation of nanoparticle (NP) supercrystals, which can exhibit tunable and collective properties that are different from that of their component parts, and which have potential applications in areas such as optics, electronics, and sensor platforms. Whilst the formation of high-quality supercrystals is normally a slow and complex process, recent research has shown that applying can induce gold nanoparticles to form supercrystals. Building on this and the established effect of salts on the solubility of gold nanoparticles (AuNP) coated with PEG-based ligands, Dr. Martin Schroer and his team carried out a series of experiments investigating the effect of varying pressure on in aqueous solutions. They made an unexpected observation – when a salt is added to the solution, the crystallise at a certain pressure. The phase diagram is very sensitive, and the crystallisation can be tuned by varying the type of salt added, and its concentration.

The team used small angle x-ray scattering (SAXS) on beamline I22 to study the crystallisation in situ with different chloride salts (NaCl, KCl, RbCl, CsCl). As Dr. Schroer explains,

Nanoparticles form supercrystals under pressure
Fig. 2: Pressure – salt concentration phase diagram of AuNP@PEG. For low pressures, the particles are in the liquid state, beyond a critical pressure, face-centred cubic (fcc) superlattices are formed within solution. The crystallisation transition depends on the salt concentration as well as on the salt type. Credit: Diamond Light Source

I22 is one of the few beamlines to offer a high-pressure environment, and it is unusual because the experimental setup is easily managed by the users themselves. The beamline staff are excellent, and we are particularly grateful for their expertise in data processing, which was invaluable."

The resulting pressure-salt concentration phase diagram shows that the crystallisation is a result of the combined effect of salt and pressure on the PEG coatings. Supercrystal formation occurs only at high salt concentrations, and is reversible. Increasing the salt concentration leads to a continuous decrease of the crystallisation pressure, whereas the lattice structure and degree of crystallinity is independent of the type and concentration.

When reaching the crystallisation pressure, supercrystals form within the whole suspension; compressing the liquid further results in changes of the lattice constant, but no further crystallisation or structural transitions. This technique should be applicable to a variety of nanomaterials, and future studies may reveal insights into supercrystal formation that will help to understand crystallisation processes and enable the development of new and quicker methods for the synthesis of NP supercrystals.

The NP appears to be instantaneous, but in this set of experiments there was a delay of around 30 seconds between applying the pressure and taking the SAXS measurements. Dr. Schroer and his team are returning to Diamond later this year to carry out time-resolved studies to further investigate this phenomenon.

Explore further: Large supercrystals promise superior sensors

More information: Martin A. Schroer et al. Pressure-Stimulated Supercrystal Formation in Nanoparticle Suspensions, The Journal of Physical Chemistry Letters (2018). DOI: 10.1021/acs.jpclett.8b02145

Nicholas J. Brooks et al. Automated high pressure cell for pressure jump x-ray diffraction, Review of Scientific Instruments (2010). DOI: 10.1063/1.3449332

Related Stories

Large supercrystals promise superior sensors

August 1, 2018

Using an artful combination of nanotechnology and basic chemistry, Sandia National Laboratories researchers have encouraged gold nanoparticles to self-assemble into unusually large supercrystals that could significantly improve ...

Watching two-dimensional materials grow

August 29, 2018

They are among the thinnest structures on earth: "two-dimensional materials" are crystals which consist of only one or a few layers of atoms. They often display unusual properties, promising many new applications in opto-electronics ...

CHESS X-rays show how to grow crystals from crystals

October 8, 2014

( —Way too small to see, nanocrystals – tiny crystals that are at least 1,000 times smaller than the diameter of a human hair – exhibit unprecedented properties that intrigue scientists and engineers. To apply ...

Real-time imaging of chemical processes

July 24, 2018

National University of Singapore scientists observe the real-time formation of hollow structures in the galvanic replacement (GR) reaction between silver and gold with nanometre resolution, gaining insights on the mechanisms ...

Recommended for you

Solving mazes with single-molecule DNA navigators

November 16, 2018

The field of intelligent nanorobotics is based on the great promise of molecular devices with information processing capabilities. In a new study that supports the trend of DNA-based information carriers, scientists have ...

A way to make batteries almost any shape desired

November 16, 2018

A team of researchers from Korea Advanced Institute of Science and Technology, Harvard University and Korea Research Institute of Chemical Technology has developed a way to make batteries in almost any shape that can be imagined. ...

Graphene flickers at 400Hz in 2500ppi displays

November 16, 2018

With virtual reality (VR) sizzling in every electronic fair, there is a need for displays with higher resolution, frame rates and power efficiency. Now, a joint collaboration of researchers from SCALE Nanotech, Graphenea ...

'Smart skin' simplifies spotting strain in structures

November 15, 2018

Thanks to one peculiar characteristic of carbon nanotubes, engineers will soon be able to measure the accumulated strain in an airplane, a bridge or a pipeline – or just about anything – over the entire surface or down ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.