Qrypt licenses ORNL's quantum random number generator to fortify encryption methods

August 27, 2018 by Sara Shoemaker, Oak Ridge National Laboratory
Development of ORNL's quantum random number generator began with basic components including an LED light, the source from which a field of quadrillions of photons are produced. The device can detect and measure the quantum statistics of photons present in the field and use each one as the basis for creating truly unique encryption keys that are impossible to decipher or predict. Credit: Brian Williams/Oak Ridge National Laboratory, U.S. Dept. of Energy

Qrypt, Inc., has exclusively licensed a novel cyber security technology from the Department of Energy's Oak Ridge National Laboratory, promising a stronger defense against cyberattacks including those posed by quantum computing.

Qrypt will incorporate ORNL's , or QRNG, into the company's existing encryption platform, using inherent quantum randomness to create unique and unpredictable encryption keys enabling virtually impenetrable communications.

The advent of offers a fundamentally new approach to solving some of the world's most difficult and pressing problems. However, quantum computing will also render current encryption methods obsolete and require a reimagined, quantum-based approach to protecting data.

"The cryptography we have developed is based on true quantum sources of entropy and is mathematically proven to be unbreakable—even in theory," said Denis Mandich, Qrypt's chief officer at the company's New York City office.

"Until recently, this class of technology was unavailable at the scale required to encrypt Internet-sized datasets," Mandich said. "Simply relying on increasing the complexity of cryptographic algorithms has again proven to be a failing bet."

ORNL's research is integral to Qrypt's hybrid approach: combining quantum physics hardware with post-quantum cryptographic algorithms and software. "We anticipate a long and productive partnership with one of the nation's premier labs as we continue to develop secure computing technologies," he added.

One method for successful, failsafe encryption will come from encoding messages with encryption keys that are truly random. That is, there is no realistic chance the exact key sequence used could be generated more than once.

ORNL's Michelle Buchanan, left, and Qrypt founder and CEO Kevin Chalker signed a licensing agreement for novel cyber security technology that promises a stronger defense against cyberattacks including those posed by quantum computing. Credit: Carlos Jones/Oak Ridge National Laboratory, U.S. Dept. of Energy

To harness quantum's perfect randomness, ORNL coinventor Raphael Pooser and his colleagues from the lab's quantum sensing, computing, and communications teams developed a quantum random number generator that detects the presence and characteristics of electro-magnetic waves, called photons, streaming from a light source.

"A field of quadrillions of photons are produced and pass through a beam splitter," Pooser said. "Different from other QRNG technologies, our method does not require that we wait for a single photon to appear, but allows us to use the collective statistics of large numbers of them."

The ORNL device can detect and measure the quantum statistics of photons present in the field and use each one as the basis for creating truly unique that are impossible to decipher or predict.

"While true and quantum random number generators have been available for years, they were impractical to incorporate into server size appliances and their output was always very limited," Mandich said.

ORNL's scientific achievement can be proven based on quantum entropy, a purely probabilistic effect, he said.

"Many competing technologies advertise true randomness and pass modern statistical testing, yet there is no guarantee they do not have a pattern discoverable in the future," said Mandich.

"Historically, patterns, predictability and repetition are a critical flaw for many crypto systems, allowing them to fall to basic cryptanalysis," he added.

Qrypt will incorporate ORNL's technology into a suite of quantum-resistant encryption techniques and technologies, including a card or chip enabling quick of vast datasets. Data protected by this technology will be secure against attack by quantum computers or any future computational device and developments in the mathematics of cryptanalysis.

Explore further: The exciting new age of quantum computing

Related Stories

The exciting new age of quantum computing

October 25, 2016

What does the future hold for computing? Experts at the Networked Quantum Information Technologies Hub (NQIT), based at Oxford University, believe our next great technological leap lies in the development of quantum computing.

New quantum method generates really random numbers

April 11, 2018

Researchers at the National Institute of Standards and Technology (NIST) have developed a method for generating numbers guaranteed to be random by quantum mechanics. Described in the April 12 issue of Nature, the experimental ...

Recommended for you

New insights into magnetic quantum effects in solids

January 23, 2019

Using a new computational method, an international collaboration has succeeded for the first time in systematically investigating magnetic quantum effects in the well-known 3-D pyrochlore Heisenberg model. The surprising ...

Rapid and continuous 3-D printing with light

January 22, 2019

Three-dimensional (3-D) printing, also known as additive manufacturing (AM), can transform a material layer by layer to build an object of interest. 3-D printing is not a new concept, since stereolithography printers have ...

Scientists discover new quantum spin liquid

January 22, 2019

An international research team led by the University of Liverpool and McMaster University has made a significant breakthrough in the search for new states of matter.

Researchers capture an image of negative capacitance in action

January 21, 2019

For the first time ever, an international team of researchers imaged the microscopic state of negative capacitance. This novel result provides researchers with fundamental, atomistic insight into the physics of negative capacitance, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.