Nanotube 'rebar' makes graphene twice as tough

August 2, 2018 by Mike Williams, Rice University
An image depicts a sample of rebar graphene after testing under an electron microscope by materials scientists at Rice University. It shows how cracks propagate in a zigzag way, rather than straight, as would be seen in plain graphene. The rebar graphene is attached by molecular forces on both sides to a platform that slowly pulls the material apart. Credit: Emily Hacopian/Lou Group

Rice University researchers have found that fracture-resistant "rebar graphene" is more than twice as tough as pristine graphene.

Graphene is a one-atom-thick sheet of carbon. On the two-dimensional scale, the material is stronger than steel, but because is so thin, it is still subject to ripping and tearing.

Rebar graphene is the nanoscale analog of rebar (reinforcement bars) in concrete, in which embedded steel bars enhance the material's strength and durability. Rebar graphene, developed by the Rice lab of chemist James Tour in 2014, uses carbon nanotubes for reinforcement.

In a new study in the American Chemical Society journal ACS Nano, Rice scientist Jun Lou, graduate student and lead author Emily Hacopian and collaborators, including Tour, stress-tested rebar graphene and found that nanotube rebar diverted and bridged cracks that would otherwise propagate in unreinforced graphene.

The experiments showed that nanotubes help graphene stay stretchy and also reduce the effects of cracks. That could be useful not only for flexible electronics but also electrically active wearables or other devices where stress tolerance, flexibility, transparency and mechanical stability are desired, Lou said.

Both the lab's mechanical tests and by collaborators at Brown University revealed the material's toughness.

Graphene's excellent conductivity makes it a strong candidate for devices, but its brittle nature is a downside, Lou said. His lab reported two years ago that graphene is only as strong as its weakest link. Those tests showed the strength of pristine graphene to be "substantially lower" than its reported intrinsic strength. In a later study, the lab found molybdenum diselenide, another two-dimensional material of interest to researchers, is also brittle.

Tour approached Lou and his group to carry out similar tests on rebar graphene, made by spin-coating single-walled nanotubes onto a copper substrate and growing graphene atop them via chemical vapor deposition.

To stress-test rebar graphene, Hacopian, Yang and colleagues had to pull it to pieces and measure the force that was applied. Through trial and error, the lab developed a way to cut microscopic pieces of the material and mount it on a testbed for use with scanning electron and transmission electron microscopes.

"We couldn't use glue, so we had to understand the intermolecular forces between the material and our testing devices," Hacopian said. "With materials this fragile, it's really difficult."

Rice University graduate student Emily Hacopian holds the platform she used to study the strength of rebar graphene under a microscope. Hacopian and colleagues discovered that reinforcing graphene with carbon nanotubes makes the material twice as tough. Credit: Jeff Fitlow

Rebar didn't keep graphene from ultimate failure, but the nanotubes slowed the process by forcing cracks to zig and zag as they propagated. When the force was too weak to completely break the graphene, nanotubes effectively bridged cracks and in some cases preserved the material's conductivity.

In earlier tests, Lou's lab showed graphene has a native fracture toughness of 4 megapascals. In contrast, rebar graphene has an average toughness of 10.7 megapascals, he said.

Simulations by study co-author Huajian Gao and his team at Brown confirmed results from the physical experiments. Gao's team found the same effects in simulations with orderly rows of rebar in graphene as those measured in the physical samples with rebar pointing every which way.

"The simulations are important because they let us see the process on a time scale that isn't available to us with microscopy techniques, which only give us snapshots," Lou said. "The Brown team really helped us understand what's happening behind the numbers."

He said the rebar graphene results are a first step toward the characterization of many new materials. "We hope this opens a direction people can pursue to engineer 2-D material features for applications," Lou said.

Hacopian, Yingchao Yang of the University of Maine and Bo Ni of Brown University are co-lead authors of the paper. Co-authors are Yilun Li, Hua Guo of Rice, Xing Li of Rice and Zhengzhou University and Qing Chen of Peking University. Lou is a professor of materials science and nanoengineering at Rice. Tour is the T.T. and W.F. Chao Chair in Chemistry and a professor of computer science and of materials science and nanoengineering Rice. Gao is the Walter H. Annenberg Professor of Engineering at Brown.

Explore further: 'Rivet graphene' proves its mettle: Toughened material is easier to handle, useful for electronics

More information: Emily F. Hacopian et al. Toughening Graphene by Integrating Carbon Nanotubes, ACS Nano (2018). DOI: 10.1021/acsnano.8b02311

Related Stories

Chemists create 3-D printed graphene foam

June 21, 2017

Nanotechnologists from Rice University and China's Tianjin University have used 3-D laser printing to fabricate centimeter-sized objects of atomically thin graphene.

Recommended for you

'Smart skin' simplifies spotting strain in structures

November 15, 2018

Thanks to one peculiar characteristic of carbon nanotubes, engineers will soon be able to measure the accumulated strain in an airplane, a bridge or a pipeline – or just about anything – over the entire surface or down ...

Stealth-cap technology for light-emitting nanoparticles

November 14, 2018

A team of scientists from the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), in collaboration with researchers from Monash University Australia, has succeeded in significantly increasing the stability and biocompatibility of ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Thorium Boy
1 / 5 (1) Aug 03, 2018
Graphene has amounted to nothing. It's a lab curiousity.
humy
5 / 5 (1) Aug 03, 2018
Graphene has amounted to nothing. It's a lab curiousity.

Vertually all new ideas that lead to real life applications start off as just a curiousity.
It's just a matter of when, not if, graphene will have important wide scale uses.
See
https://en.wikipe...graphene
"...Potential graphene applications include lightweight, thin, flexible, yet incredibly lightweight to, electric/photonics circuits, solar cells, and various medical, chemical and industrial processes enhanced or enabled by the use of new graphene materials..."

The similar carbon carbon composites idea started off as just an idea;
https://en.wikipe..._polymer

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.