Graphene smart membranes can control water

July 12, 2018, University of Manchester
Credit: University of Manchester

Researchers at The University of Manchester's National Graphene Institute (NGI) have achieved a long-sought-after objective of electrically controlling water flow through membranes, as reported in Nature.

This is the latest exciting membranes development benfitting from the unique properties of . The new research opens up an avenue for developing smart membrane technologies and could revolutionise the field of artificial biological systems, tissue engineering and filtration.

Graphene is capable of forming a tuneable filter or even a perfect barrier when dealing with liquids and gases. New 'smart' membranes developed using an inexpensive form of graphene called graphene oxide, have been demonstrated to allow precise control of by using an electrical current. The membranes can even be used to completely block from passing through when required.

The team, led by Professor Rahul Nair, embedded conductive filaments within the electrically insulating . An electric current passed through these nano-filaments created a large electric field which ionises the water molecules and thus controls the water transport through the graphene capillaries in the membrane.

Prof Nair said: "This new research allows us to precisely control water permeation, from ultrafast permeation to complete blocking. Our work opens up an avenue for further developing smart membrane technologies.

"Developing smart membranes that allow precise and reversible control of molecular permeation using external stimuli would be of intense interest for many areas of science; from physics and chemistry, to life-sciences."

Credit: University of Manchester

The achievement of electrical control of water flow through membranes is a step change because of its similarity to several biological process where the main stimuli are electrical signals. Controlled water transport is a key for renal water conservation, regulation of body temperature and digestion. The reported electrical control of water transport through therefore opens a new dimension in developing artificial biological systems and advanced nanofluidic devices for various applications.

Previously, the research group have demonstrated that graphene oxide membranes can be used as a sieve to remove salt from seawater for desalination alternatives. Last year they also showed that the membranes could remove the colour pigment from whisky without affecting its other properties.

For the ground breaking research in graphene-based membranes, Professor Andre Geim and Professor Rahul Nair have won 8th Award of the Prince Sultan Bin Abdulaziz International Prize for Water (PSIPW)

Scientists have long been trying to control water flow through membrane by using an external stimuli due to its importance for healthcare and related areas. Currently, such adjustable membranes are limited to the modulation of wetting of the membranes and controlled ion transport, but not the controlled mass flow of water.

Dr. Kai-Ge Zhou, lead author for the research paper said, "The reported graphene smart membrane technology is not just limited to controlling the water flow. The same membrane can be used as a smart adsorbent or sponge. Water adsorbed on the membrane can be preserved in the even in desert conditions if a current is applied. We could release this water on demand by switching the current off."

Dr. Vasu, second lead author commented, "Our work not only opens new applications for graphene membranes but it allows us to understand the effect of electrical field on the nanoscale properties of confined water. Despite many conflicting theoretical predictions ranging from freezing of water molecules to melting of ice under an electric field, the experimental evidence for electric field effects were missing. Our work shows that large electric field can ionise water in to its constituent ions."

The work was done in collaboration with scientists from the University of York, Shahid Rajaee Teacher Training University, Iran, and the University of Antwerpen, Belgium.

Graphene and related two-dimensional materials have shown promise for developing new applications as well as enhancing currently used processes for areas as diverse as; electronics, composites, sensors and biomedical. Membranes have become as key research and development theme for desalination, gas separation and healthcare.

Explore further: Graphene water filter turns whisky clear

More information: Electrically controlled water permeation through graphene oxide membranes , Nature (2018). DOI: 10.1038/s41586-018-0292-y , https://www.nature.com/articles/s41586-018-0292-y

Related Stories

Graphene water filter turns whisky clear

November 14, 2017

Previously graphene-oxide membranes were shown to be completely impermeable to all solvents except for water. However, a study published in Nature Materials, now shows that we can tailor the molecules that pass through these ...

Graphene sieve turns seawater into drinking water

April 3, 2017

Graphene-oxide membranes have attracted considerable attention as promising candidates for new filtration technologies. Now the much sought-after development of making membranes capable of sieving common salts has been achieved.

Graphene makes its mark on gas separation

June 15, 2018

Graphene Flagship researchers overcame the theoretical limiting performance of membranes in gas separation. This collaborative research from Graphene Flagship partners CNR, University of Bologna and Graphene-XT has potential ...

Graphene's love affair with water

February 13, 2014

Graphene has proven itself as a wonder material with a vast range of unique properties. Among the least-known marvels of graphene is its strange love affair with water.

Toward a smart graphene membrane to desalinate water

September 4, 2017

An international team of researchers, including scientists from Shinshu University (Japan) and the director of Penn State's ATOMIC Center, has developed a graphene-based coating for desalination membranes that is more robust ...

New insights on graphene

December 21, 2017

Graphene floating on water does not repel water, as many researchers believe, but rather attracts it. This has been demonstrated by chemists Liubov Belyaeva and Pauline van Deursen and their supervisor Grégory F. Schneider. ...

Recommended for you

Solution for next generation nanochips comes out of thin air

November 19, 2018

Researchers at RMIT University have engineered a new type of transistor, the building block for all electronics. Instead of sending electrical currents through silicon, these transistors send electrons through narrow air ...

Scientists create atomic scale, 2-D electronic kagome lattice

November 19, 2018

Scientists from the University of Wollongong (UOW), working with colleagues at China's Beihang University, Nankai University, and Institute of Physics at Chinese Academy of Sciences, have successfully created an atomic scale, ...

Solving mazes with single-molecule DNA navigators

November 16, 2018

The field of intelligent nanorobotics is based on the great promise of molecular devices with information processing capabilities. In a new study that supports the trend of DNA-based information carriers, scientists have ...

A way to make batteries almost any shape desired

November 16, 2018

A team of researchers from Korea Advanced Institute of Science and Technology, Harvard University and Korea Research Institute of Chemical Technology has developed a way to make batteries in almost any shape that can be imagined. ...

'Smart skin' simplifies spotting strain in structures

November 15, 2018

Thanks to one peculiar characteristic of carbon nanotubes, engineers will soon be able to measure the accumulated strain in an airplane, a bridge or a pipeline – or just about anything – over the entire surface or down ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.