Searching for wind for the future

July 18, 2018, King Abdullah University of Science and Technology
Searching for wind for the future
Image caption and credit: The study considered how the latest regional climate models might inform an analysis of wind power potential across the Arabian Peninsula. Credit: Olekcii Mach / Alamy Stock Photo

The first quantification of wind energy in Saudi Arabia points to high wind power potential for many decades to come.

Using outputs from a high-resolution regional climate model, KAUST researchers have confirmed the potential for as a significant energy across the Arabian Peninsula. This is an important first step in developing a strategy for Saudi Arabia's wind energy sector.

As part of an ongoing collaboration with the University of Notre Dame in the United States, Marc Genton's research group recently turned its attention to how the latest models might inform an analysis of the potential for across the Arabian Peninsula—a region that has very little recorded wind speed data, but also has complex topography and diverse terrain and meteorology.

"Saudi Arabia has mostly relied on fossil fuels for its energy needs, but this is changing due to the rising energy demand resulting from industrial development, urbanization and growth of its population," explains Wanfang Chen, a doctoral student in Genton's team. Wind power could therefore become a significant source of renewable energy, but the scale of the wind energy resource has yet to be rigorously quantified.

As direct wind-speed measurements are available only for very sparse locations across the peninsula, an assessment of the potential for wind as an energy source over the whole region is not feasible based solely on observational data. Computer simulations can help, but previously could not deliver the spatial or temporal resolution needed to accurately characterize resources for wind-farm planning in this .

Through its collaboration with Notre Dame, Genton's group used the high-resolution data of the recently developed Middle East North Africa (MENA) model of the International Coordinated Regional Climate Downscaling Experiment (CORDEX) to investigate possible changes in wind resources as a result of climate change.

"While we knew the Saudi Arabia has regions of high wind-power density, particularly along the Red Sea coast and over areas in the southeast and adjacent to the Persian Gulf, this work revealed considerable potential for wind in other regions during specific seasons," says Chen.

The MENA-CORDEX model also predicts a number of high-potential areas to consistently project high wind-power density for many decades into the future, making these areas promising locations for harvesting .

"Our study emphasizes the potential of using such models to infer spatio-temporal variations of wind resources under current and future climate conditions," says Chen. "We are planning to expand this work to higher resolution simulations that will provide unique insights for wind farm planning."

Explore further: Modeling where the wind blows

Related Stories

Modeling where the wind blows

January 9, 2018

By incorporating geographical information into models for wind energy, researchers from KAUST have developed an innovative statistical tool that reduces the computational burden of locating global wind resources.

New wind turbines show high efficiency in low winds

June 12, 2018

VTT Research Centre of Technology (VTT) has explored the potential and economic benefits of new wind power technology. The technology would greatly increase the benefits of wind energy and enable the competitive utilisation ...

Wind energy's swift growth, explained (Update)

April 23, 2018

The wind industry is growing quickly around the world, especially in China and the U.S., where the total amount of electricity generated by wind turbines nearly doubled between 2011 and 2017.

Recommended for you

Nanoscale Lamb wave-driven motors in nonliquid environments

March 19, 2019

Light driven movement is challenging in nonliquid environments as micro-sized objects can experience strong dry adhesion to contact surfaces and resist movement. In a recent study, Jinsheng Lu and co-workers at the College ...

OSIRIS-REx reveals asteroid Bennu has big surprises

March 19, 2019

A NASA spacecraft that will return a sample of a near-Earth asteroid named Bennu to Earth in 2023 made the first-ever close-up observations of particle plumes erupting from an asteroid's surface. Bennu also revealed itself ...

Levitating objects with light

March 19, 2019

Researchers at Caltech have designed a way to levitate and propel objects using only light, by creating specific nanoscale patterning on the objects' surfaces.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.