Breakthrough in industrial CO2 usage

July 26, 2018, Technical University Munich
Ball-and-stick model of carbon dioxide. Credit: Wikipedia

Professor Arne Skerra of the Technical University of Munich (TUM) has succeeded for the first time in using gaseous CO2 as a basic material for the production of a chemical mass product in a biotechnical reaction. The product is methionine, which is used as an essential amino acid, particularly in animal feed, on a large scale. This newly developed enzymatic process could replace its current petrochemical production. The results have now been published in the journal Nature Catalysis.

The of from petrochemical source materials is currently done via a six-step chemical that requires highly toxic hydrogen cyanide, among other substrates. In 2013, Evonik Industries, one of the world's largest manufacturers of methionine, invited university researchers to propose new processes for making the substance safer to produce. Methional, which occurs in nature as a degradation product of methionine, is formed as a facile intermediate during the conventional process.

"Based on the idea that methionine in microorganisms is degraded by enzymes to methional with the release of CO2, we tried to reverse this process," explains Professor Arne Skerra from the Department of Biological Chemistry at TUM, "because every chemical reaction is in principle reversible, while often only with the extensive use of energy and pressure." Skerra participated in the call for proposals with this idea, and Evonik awarded the concept and supported the project.

Supported by postdoctoral researcher Lukas Eisoldt, Skerra began to determine the parameters for the manufacturing process and for producing the necessary biocatalysts (enzymes). The scientists conducted initial experiments and determined the CO2 pressure which would be needed to produce methionine from methional in a biocatalytic process. Surprisingly, an unexpectedly high yield resulted even at a relatively low pressure—approximately corresponding to the one in a car tire of approximately two bars. Based upon the achievements after just one year, Evonik extended the funding, and now the team, reinforced by the Ph.D. student Julia Martin, investigated the biochemical background of the reaction and optimized the enzymes involved using protein engineering.

More efficient than photosynthesis

After several years of work, not only was it possible to improve the reaction on a laboratory scale to a yield of 40 percent, but also to elucidate the theoretical background of the biochemical processes. "Compared to the complex photosynthesis, in which nature also biocatalytically incorporates CO2 into biomolecules as a building block, our process is highly elegant and simple," reports Arne Skerra. "Photosynthesis uses 14 enzymes and has a yield of only 20 percent, while our method requires just two enzymes."

In the future, the basic principle of this novel biocatalytic reaction can serve as a model for the industrial production of other valuable amino acids or precursors for pharmaceuticals. Meanwhile, Professor Skerra's team will refine the process, which has been patented, using protein engineering so that it will become suitable for large-scale application.

This could be the first time that there is a biotechnological manufacturing process using gaseous CO2 as an immediate chemical precursor. Up to now, attempts to recycle the greenhouse gas, which is a major contributor to climate change, have failed due to the extremely high energy required to do so.

Explore further: New research reveals role of methionine in enzyme catalysis

More information: Julia Martin et al, Fixation of gaseous CO2 by reversing a decarboxylase for the biocatalytic synthesis of the essential amino acid l-methionine, Nature Catalysis (2018). DOI: 10.1038/s41929-018-0107-4

Related Stories

New research reveals role of methionine in enzyme catalysis

February 27, 2014

The first convincing evidence that the amino acid methionine plays a role in catalysis in an enzyme has been uncovered by researchers from the University of Bristol. Previously, it was thought that methionine was only involved ...

Designer enzyme uses unnatural amino acid for catalysis

July 2, 2018

University of Groningen chemists have created a new enzyme with an unnatural amino acid as its active centre. They made the enzyme by modifying an antibiotic binding protein which normally acts as a bacterial transcription ...

Virus genes from city pond rescue bacteria

May 28, 2018

A key question in evolutionary biology is how new functions arise. New research at Uppsala University, Sweden, shows that bacteriophages (viruses that infect bacteria) can contribute to new functions by revealing hidden potential ...

Creating complex molecules in just a few steps

March 7, 2018

Researchers have found a way to convert single bonds between carbon and hydrogen atoms in a chemical molecule into carbon-carbon bonds. This so-called C-H activation is considered a promising strategy for producing complex ...

Hydrogen gas from enzyme production

December 6, 2017

Researchers at Freie Universität Berlin and the Ruhr-Universität Bochum have uncovered a crucial reaction principle of hydrogen-producing enzymes. Teams led by Dr. Ulf-Peter Apfel in Bochum and Dr. Sven T. Stripp at Freie ...

Recommended for you

Zapping a new approach to solar cells

August 13, 2018

A simple and fast microwave experiment with the common chemical element phosphorus at Flinders University has opened the prospect of more affordable and effective super-thin solar cells.

Hybrid catalyst with high enantiomer selectivity

August 9, 2018

A group of Japanese researchers has developed a technology to create a hybrid catalyst from simple-structured, commercially available rhodium and organic catalysts, which reduces chemical waste and produces molecules with ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.