Manipulating single atoms with an electron beam

July 9, 2018, University of Vienna
An electron beam focused on a carbon atom next to a silicon impurity atom can controllably make it jump to where the beam was placed. Step by step this allows the silicon to be moved with atomic precision around a hexagonal path. Credit: Toma Susi / University of Vienna

All matter is composed of atoms, which are too small to see without powerful modern instruments including electron microscopes. The same electrons that form images of atomic structures can also be used to move atoms in materials. This technique of single-atom manipulation, pioneered by University of Vienna researchers, is now able to achieve nearly perfect control over the movement of individual silicon impurity atoms within the lattice of graphene, the two-dimensional sheet of carbon. The latest results are reported in the scientific journal Nano Letters.

As an epoch-making achievement in nanotechnology, the scanning tunneling microscope has since the late 1980s been able to move over surfaces, and has until very recently been the only technology capable of moving in such a controlled manner. Now, the scanning (STEM) is able to reliably focus an electron beam with sub-atomic precision, allowing scientists to directly see each atom in two-dimensional materials like graphene, and also to target single atoms with the beam. Each electron has a tiny chance of scattering back from a nucleus, giving it a kick in the opposite direction.

Building on work published over the past few years, a research team at the University of Vienna led by Toma Susi has now used the advanced electron microscope Nion UltraSTEM100 to move single silicon atoms in graphene with truly atomic precision. Even with manual operation, the achieved movement rate is already comparable to the state-of-the-art in any atomically precise technique. "The control we are able to achieve by essentially directing the by hand is already remarkable, but we have further taken the first steps towards automation by detecting the jumps in real time," says Susi. The new results also improve theoretical models of the process by including simulations by collaborators in Belgium and Norway.

In total, the researchers recorded nearly 300 controlled jumps. Additional to extended paths or moving around a single hexagon made of in graphene, a silicon impurity could be moved back and forth between two neighboring lattice sites separated by one tenth-billionth of a meter, like flipping an atomic-sized switch. In principle, this could be used to store one bit of information at record-high density. Dr. Susi concludes, "Your computer or cellphone will not have atomic memories anytime soon, but impurity atoms do seem to have potential as bits near the limits of what is physically possible."

Credit: University of Vienna

Explore further: Moving silicon atoms in graphene with atomic precision

More information: Mukesh Tripathi et al. Electron-Beam Manipulation of Silicon Dopants in Graphene, Nano Letters (2018). DOI: 10.1021/acs.nanolett.8b02406

Related Stories

Moving silicon atoms in graphene with atomic precision

September 12, 2014

Richard Feynman famously posed the question in 1959: is it possible to see and manipulate individual atoms in materials? For a time his vision seemed more science fiction than science, but starting with groundbreaking experiments ...

Individual impurity atoms detectable in graphene

April 13, 2018

A team including physicists from the University of Basel has succeeded in using atomic force microscopy to obtain clear images of individual impurity atoms in graphene ribbons. Thanks to the forces measured in the graphene's ...

'Weighing' atoms with electrons

October 11, 2016

The different elements found in nature each have their distinct isotopes. For carbon, there are 99 atoms of the lighter stable carbon isotope 12C for each 13C atom, which has one more neutron in its nucleus. Apart from this ...

Recommended for you

Study sheds light on—and through—2-D materials

September 24, 2018

The ability of metallic or semiconducting materials to absorb, reflect and act upon light is of primary importance to scientists developing optoelectronics—electronic devices that interact with light to perform tasks. Rice ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.