'Weighing' atoms with electrons

October 11, 2016, University of Vienna
Although atoms in graphene can be "seen" by shooting electrons through the material in what is called transmission electron microscopy, different isotopes can appear identical. Credit: Copyright: Koponen+Hildén, Creative Commons BY 4.0

The different elements found in nature each have their distinct isotopes. For carbon, there are 99 atoms of the lighter stable carbon isotope 12C for each 13C atom, which has one more neutron in its nucleus. Apart from this natural variation, materials can be grown from isotope-enriched chemicals. This allows scientists to study how the atoms arrange into solids, for example to improve their synthesis. Yet, most traditional techniques to measure the isotope ratio require the decomposition of the material or are limited to a resolution of hundreds of nanometers, obscuring important details.

In the new study, led by Jani Kotakoski, the University of Vienna researchers used the advanced scanning transmission electron microscope Nion UltraSTEM100 to measure isotopes in nanometer-sized areas of a graphene sample. The same energetic electrons that form an image of the graphene structure can also eject one atom at a time due to scattering at a carbon nucleus. Because of the greater mass of the 13C isotope, an electron can give a 12C atom a slightly harder kick, knocking it out more easily. How many electrons are on average required gives an estimate of the local isotope concentration. "The key to making this work was combining accurate experiments with an improved theoretical model of the process", says Toma Susi, the lead author of the study.

Publishing in Nature Communications allowed the team to fully embrace open science. In addition to releasing the peer review reports alongside the article, a comprehensive description of the methods and analyses is included. However, the researchers went one step further and uploaded their microscopy data onto the open repository figshare. Anyone with an Internet connection can thus freely access, use and cite the gigabytes of high-quality images. Toma Susi continues: "To our knowledge, this is the first time electron microscopy data have been openly shared at this scale."

The results show that atomic-resolution electron microscopes can distinguish between different isotopes of carbon. Although the method was now demonstrated only for graphene, it can in principle be extended for other two-dimensional materials, and the researchers have a patent pending on this invention. "Modern microscopes already allow us to resolve all atomic distances in solids and to see which chemical elements compose them. Now we can add isotopes to the list", Jani Kotakoski concludes.

The lighter the atom, the fewer electrons are on everage needed to eject it. Credit: Copyright: Koponen+Hildén, Creative Commons BY 4.0

Explore further: Electron microscopy provides atom-by-atom knowledge of doped graphene and carbon nanotubes

More information: Toma Susi et al, Isotope analysis in the transmission electron microscope, Nature Communications (2016). DOI: 10.1038/ncomms13040

Open data: Atomic resolution electron irradiation time series of isotopically labeled monolayer graphene: Toma Susi, Christoph Hofer, Giacomo Argentero, Gregor T. Leuthner, Timothy J. Pennycook, Clemens Mangler, Jannik C. Meyer & Jani Kotakoski. figshare (2016). DOI: 10.6084/m9.figshare.c.3311946.v1

Related Stories

A glimpse inside the atom

July 18, 2016

An electron microscope can't just snap a photo like a mobile phone camera can. The ability of an electron microscope to image a structure – and how successful this imaging will be – depends on how well you understand ...

Moving silicon atoms in graphene with atomic precision

September 12, 2014

Richard Feynman famously posed the question in 1959: is it possible to see and manipulate individual atoms in materials? For a time his vision seemed more science fiction than science, but starting with groundbreaking experiments ...

Observing the random diffusion of missing atoms in graphene

May 30, 2014

Imperfections in the regular atomic arrangements in crystals determine many of the properties of a material, and their diffusion is behind many microstructural changes in solids. However, imaging non-repeating atomic arrangements ...

'Artificial atom' created in graphene

August 22, 2016

In a tiny quantum prison, electrons behave quite differently as compared to their counterparts in free space. They can only occupy discrete energy levels, much like the electrons in an atom - for this reason, such electron ...

Recommended for you

Study suggests trees are crucial to the future of our cities

March 25, 2019

The shade of a single tree can provide welcome relief from the hot summer sun. But when that single tree is part of a small forest, it creates a profound cooling effect. According to a study published today in the Proceedings ...

Matter waves and quantum splinters

March 25, 2019

Physicists in the United States, Austria and Brazil have shown that shaking ultracold Bose-Einstein condensates (BECs) can cause them to either divide into uniform segments or shatter into unpredictable splinters, depending ...

Apple pivot led by star-packed video service

March 25, 2019

With Hollywood stars galore, Apple unveiled its streaming video plans Monday along with news and game subscription offerings as part of an effort to shift its focus to digital content and services to break free of its reliance ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

forumid001
not rated yet Oct 12, 2016
with the advent of nano and single molecular sciences, this kind of work is more and more relevant to research labs.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.