Novel simulation technique models material-aging process

May 4, 2018 by Lori Brandt, University of California, Irvine
Novel simulation technique models material-aging process
According to UCI engineers, the difference between aging and non-aging concrete lies in the amount of nano-confined water in its molecular building block. Credit: University of California, Irvine

The nation's aging infrastructure requires massive investment. The American Society of Civil Engineers estimates the U.S. needs to spend some $4.5 trillion by 2025 to fix the country's roads, bridges, dams and other infrastructure.

Imagine if engineers could build structures with materials that do not degrade over time. Researchers at the University of California, Irvine have proposed a new simulation technique that could help engineers do just that.

Mohammad Javad Abdolhosseini Qomi, assistant professor of civil and environmental engineering, and engineering Ali Morshedifard have developed a numerical method to simulate the molecular aging process in , such as concrete and glass. This technique could help researchers not only better understand how materials weaken with age, but also develop materials that maintain their strength indefinitely. Their work appears this week in Nature Communications.

According to the researchers, aging originates at the atomic and molecular levels. Because of this miniscule scale, it's nearly impossible to track microscopic changes over long periods. "In computer simulation of materials, you would have to simulate a quadrillion time steps to capture only one second of behavior. That would not even get us close to the time scales relevant for aging phenomena, which are in the order of years and decades," explained Qomi.

In their incremental stress-marching technique, Qomi and his graduate student subject the material's molecular structure to cyclic stress fluctuations, and then follow the material's response to such perturbations. "Hydrated cement is composed of disk-like globules at the nanoscale. We serendipitously found that these globules gradually deform under sustained load, but the deformation comes to a stop after a certain period. We also found that the collective behavior of globules gives rise to a non-asymptotic deformation, which we believe to be at the origins of creep in cementitious materials. It was fascinating to see atomic origins of viscoelastic and logarithmic deformation under constant stress," said Morshedifard, the paper's lead author.

Qomi and his research team plan to apply this new technique to explore the relationship between the composition and texture of structural materials and their time-dependent behavior.

"The Federal Highway Administration spends more than $80 billion a year to fix bridges that degrade as a result of aging phenomena," Qomi continued. "Understanding how age is the very first step toward designing reduced-aging that can potentially save taxpayers money."

Explore further: New research modernizes rammed earth construction

More information: A. Morshedifard et al, Nanoscale origins of creep in calcium silicate hydrates, Nature Communications (2018). DOI: 10.1038/s41467-018-04174-z

Related Stories

Advance could enable novel high-performance materials

March 7, 2018

An engineering physics professor at the University of Wisconsin–Madison has created new materials that behave in an unusual way that defies the standard theory engineers use for designing things like buildings, airplanes, ...

Weak hydrogen bonds key to strong, tough infrastructure

January 29, 2018

The right mix of hydrogen bonds in polymer and cement composites is critical to making strong, tough and ductile infrastructure material, according to Rice University scientists who want to mimic the mechanics of mother-of-pearl ...

Observing fracture in stressed materials

July 24, 2017

Ever wondered, while cruising at 36,000 feet over the Atlantic, what would happen if a piece of satellite, asteroid, or other debris collided with your aircraft?

Recommended for you

Privacy becomes a selling point at tech show

January 7, 2019

Apple is not among the exhibitors at the 2019 Consumer Electronics Show, but that didn't prevent the iPhone maker from sending a message to attendees on a large billboard.

China's Huawei unveils chip for global big data market

January 7, 2019

Huawei Technologies Ltd. showed off a new processor chip for data centers and cloud computing Monday, expanding into new and growing markets despite Western warnings the company might be a security risk.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.