Advance could enable novel high-performance materials

March 7, 2018 by Adam Malecek, University of Wisconsin-Madison
A lattice design in a repeating crisscross structure. The pattern in which a material’s polymer strips are arranged, according to UW–Madison engineering researchers, can confer added strength and durability. Credit: RODERIC LAKES

An engineering physics professor at the University of Wisconsin–Madison has created new materials that behave in an unusual way that defies the standard theory engineers use for designing things like buildings, airplanes, bridges and electronic devices.

It's an advance that could open the door to designing novel for applications that require high toughness—for example, that are more fracture-resistant.

The classical theory works well for predicting the behavior of most ordinary materials, including steel, aluminum and concrete, and ensuring structures can withstand mechanical forces without breaking or deforming too much. But for some materials, the theory is limiting.

Roderic Lakes and graduate student Zachariah Rueger used 3-D printing to make their new polymer lattice materials. Their design—the pattern in which the materials' polymer strips are arranged—is a repeating crisscross structure. When it's twisted or bent, a bar of this polymer lattice is about 30 times stiffer than would be expected based on classical elasticity theory.

The Wisconsin researchers described their new lattice materials in the journal Physical Review Letters on Feb. 8, 2018.

Performing measurements in the lab, Lakes determined that the materials' behavior was consistent with Cosserat elasticity, a more descriptive theory of elasticity that takes into consideration the size of the underlying structure in a material.

"When you have a material with substructure in it, such as some foams, lattices and fiber-reinforced materials, there's more freedom in it than classical elasticity theory can handle," Lakes says. "So we're studying the freedom of materials to behave in ways not anticipated by the standard theory."

This increased freedom offers a potential path to creating that are immune to stress concentration; in other words, materials with improved toughness. Such materials would be useful for a variety of applications, including making airplane wings more resistant to cracks.

If a crack forms in an airplane wing, stress is concentrated around the crack, making the wing weaker. "You need a certain amount of stress to break something, but if there's a crack in it, you can break it with less stress," Lakes says.

Using the Cosserat of elasticity to inform materials design will yield tougher materials in which stresses are distributed throughout the materials differently, according to Lakes.

These same effects are present in materials such as bone and certain types of foams. However, when engineers make foam for a seat cushion, for example, they don't have much control over the foam's substructure—the tiny bubbles that form and make up the cells inside the foam. As a result, they have limited ability to tailor the Cosserat effects.

In contrast to foam, the UW–Madison researchers can tune the Cosserat effects in their lattice materials and make them very strong.

"We developed a material in which we have exceptionally detailed control over the fine structure of our , and that enabled us to achieve very strong effects when bending and twisting the material," Lakes says.

Explore further: The shape of things to come for quantum materials?

Related Stories

The shape of things to come for quantum materials?

March 1, 2018

For the first time, researchers isolated and characterized atomically thin 2-D crystals of pentagons bonded together in palladium diselenide (PdSe2). The research confirmed predictions that the puckered structure would be ...

Researchers developing 2-D materials similar to graphene

February 2, 2018

Chemists are working to synthesize the next generation of super materials for high-performance electronics, solar cells, photodetectors and quantum computers. While they have made progress with compound materials, they have ...

New theory overcomes a longstanding polymer problem

September 15, 2016

All polymers have a distinctive degree of elasticity—how much they will stretch when a force is applied. However, for the past 100 years, polymer scientists have been stymied in their efforts to predict polymers' elasticity, ...

Explaining how 2-D materials break at the atomic level

January 18, 2017

We are familiar with cracks in big or small three-dimensional (3-D) objects, but how do thin, two-dimensional (2-D) materials crack? 2-D materials like molybdenum disulfide (MoS2), have emerged as an important asset for future ...

Recommended for you

Magic number colloidal clusters

December 14, 2018

Complexity in nature often results from self-assembly, and is considered particularly robust. Compact clusters of elemental particles can be shown to be of practical relevance, and are found in atomic nuclei, nanoparticles ...

Tangled magnetic fields power cosmic particle accelerators

December 13, 2018

Magnetic field lines tangled like spaghetti in a bowl might be behind the most powerful particle accelerators in the universe. That's the result of a new computational study by researchers from the Department of Energy's ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Mar 08, 2018
Pre-stress is a way to strengthen materials too. My research proves it.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.