Researcher collaborates with industry to create design tool for syntactic foams

December 12, 2017, NYU Tandon School of Engineering
Syntactic foams, which have been used for years in aerospace and marine applications, are being employed in a wider and wider array of products. Nikhil Gupta, NYU Tandon professor of aerospace and mechanical engineering has partnered with specialty chemical makers Dixie Chemical and Evonik to create a web-based tool that lets product manufacturers create the right kind of syntactic foam for a specific product. Credit: NYU Tandon School of Engineering

With a foundation in aerospace and deep-sea applications, syntactic foams are emerging in the construction, infrastructure, wind energy, and sports equipment industries. Companies in the transportation sector are also employing these super-light, strong materials to build more efficient, less costly vehicles.

Nikhil Gupta, NYU Tandon professor of mechanical and aerospace engineering and a leading researcher in lightweight and specialty chemicals, is working with chemical companies to make it easier for manufacturers to make the right kind of syntactic foam for their products.

Syntactic foams are composite materials fabricated by mixing tiny spheres of glass or ceramic—called microballoons—into precursor materials such as polyethylene or epoxy. But one size does not fit all: the optimal proportion of ingredients depends on the end products and such variables as the temperature, pressure, physical impact, and water exposure to which they will be subjected.

To help take the guesswork out of that process, Gupta collaborated with Dixie Chemical, a major producer of anhydride curatives for epoxy syntactic foams, and specialty maker Evonik to develop a new online , Design Syntactic, that simplifies, accelerates and improves syntactic foam material design.

The tool, which incorporates theoretical equations developed by Gupta and his team, allows a user to input variables and retrieve algorithmically derived results for proper proportions of constituent microballoons and precursor materials. For example, if a user inputs thermal specifications for a product, they will get a thermal expansion coefficient; if mechanical properties, they will receive parameters for qualities like stiffness.

Gupta explained that the tool, based on a multifunctional syntactic foam for which he received a patent this year, allows users to determine the volume fraction of particles to mix with the plastic that will result in syntactic foam exhibiting the desired properties.

"We offer a rigorous, patented design tool using established peer-reviewed and industry-accepted theory and models, so that users can develop an optimum formulation, thereby reducing the time and effort required to bring a product to the market," Gupta said.

Mike Gromacki, President of Dixie Chemical, said, "With our financial support and technical contribution, NYU has created and freely shared this tool with our industry, thus reducing technical barriers, ensuring robust design of systems, and opening new markets for these remarkable materials."

Gupta recently collaborated with the National Institute of Technology-Karnataka (NIT-K), India, to study the means by which smaller plastic-component manufacturers can more easily produce syntactic foams for cars and consumer goods.

Explore further: Syntactic foam sandwich fills hunger for lightweight yet strong materials

Related Stories

A metal composite that will (literally) float your boat

May 12, 2015

Researchers have demonstrated a new metal matrix composite that is so light that it can float on water. A boat made of such lightweight composites will not sink despite damage to its structure. The new material also promises ...

Turning car plastics into foams with coconut oil

June 7, 2017

End-of-life vehicles, with their plastic, metal and rubber components, are responsible for millions of tons of waste around the world each year. Now, one team reports in ACS Sustainable Chemistry & Engineering that the plastic ...

Making a multi-use, stiff carbon foam using bread

July 13, 2016

Sturdy, lightweight carbon foam has many structural and insulating applications in aerospace engineering, energy storage and temperature maintenance. Current methods to create this material run into difficulties when trying ...

Wood-derived foam materials

April 29, 2015

Since most foam materials are made of petrochemical plastics, they aren't very climate-friendly. But now an alternative is in sight – a novel foam material produced entirely from wood, which is not harmful to the environment ...

Recommended for you

Permanent, wireless self-charging system using NIR band

October 8, 2018

As wearable devices are emerging, there are numerous studies on wireless charging systems. Here, a KAIST research team has developed a permanent, wireless self-charging platform for low-power wearable electronics by converting ...

Facebook launches AI video-calling device 'Portal'

October 8, 2018

Facebook on Monday launched a range of AI-powered video-calling devices, a strategic revolution for the social network giant which is aiming for a slice of the smart speaker market that is currently dominated by Amazon and ...

Artificial enzymes convert solar energy into hydrogen gas

October 4, 2018

In a new scientific article, researchers at Uppsala University describe how, using a completely new method, they have synthesised an artificial enzyme that functions in the metabolism of living cells. These enzymes can utilize ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.