Environmental noise paradoxically preserves the coherence of a quantum system

May 30, 2018, RIKEN
Credit: CC0 Public Domain

Quantum computers promise to advance certain areas of complex computing. One of the roadblocks to their development, however, is the fact that quantum phenomena, which take place at the level of atomic particles, can be severely affected by environmental "noise" from their surroundings. In the past, scientists have tried to maintain the coherence of the systems by cooling them to very low temperatures, for example, but challenges remain. Now, in research published in Nature Communications, scientists from the RIKEN Center for Emergent Matter Science and collaborators have used dephasing to maintain quantum coherence in a three-particle system. Normally, dephasing causes decoherence in quantum systems.

Quantum phenomena are generally restricted to the atomic level, but there are cases—such as laser light and superconductivity—in which the of allows them to be expressed at the macroscopic level. This is important for the development of quantum computers. However, they are also extremely sensitive to the environment, which destroys the coherence that makes them meaningful.

The group, led by Seigo Tarucha of the RIKEN Center for Emergent Matter Science, set up a system of three quantum dots in which could be individually controlled with an electric field. They began with two entangled electron spins in one of the end quantum dots, while keeping the center dot empty, and transferred one of these spins to the center dot. They then swapped the center dot spin with a third spin in the other end dot using electric pulses, so that the third spin was now entangled with the first. The entanglement was stronger than expected, and based on simulations, the researchers realized that the around the system was, paradoxically, helping the entanglement to form.

According to Takashi Nakajima, the first author of the study, "We discovered that this derives from a phenomenon known as the 'quantum Zeno paradox,' or 'Turing paradox,' which means that we can slow down a quantum system by the mere act of observing it frequently. This is interesting, as it leads to environmental noise, which normally makes a system incoherent, Here, it made the system more coherent."

Tarucha, the leader of the team, says, "This is a very exciting finding, as it could potentially help to accelerate research into scaling up semiconductor quantum computers, allowing us to solve scientific problems that are very tough on conventional systems."

Nakajima says, "Another area that is very interesting to me is that a number of biological systems, such as photosynthesis, that operate within a very noisy environment take advantage of macroscopic coherence, and it is interesting to ponder if a similar process may be taking place."

Explore further: Researchers create a quantum entanglement between two physically separated ultra-cold atomic clouds

More information: Takashi Nakajima et al, Coherent transfer of electron spin correlations assisted by dephasing noise, Nature Communications (2018). DOI: 10.1038/s41467-018-04544-7

Related Stories

Experimental method measures robustness of quantum coherence

July 27, 2017

Researchers at the UAB have come up with a method to measure the strength of the superposition coherence in any given quantum state. The method, published in the journal Proceedings of the Royal Society A, is based on the ...

Physicists set new record with 10-qubit entanglement

November 29, 2017

(Phys.org)—Physicists have experimentally demonstrated quantum entanglement with 10 qubits on a superconducting circuit, surpassing the previous record of nine entangled superconducting qubits. The 10-qubit state is the ...

Recommended for you

How community structure affects the resilience of a network

June 22, 2018

Network theory is a method for analyzing the connections between nodes in a system. One of the most compelling aspects of network theory is that discoveries related to one field, such as cellular biology, can be abstracted ...

The pho­to­elec­tric ef­fect in stereo

June 22, 2018

In the photoelectric effect, a photon ejects an electron from a material. Researchers at ETH have now used attosecond laser pulses to measure the time evolution of this effect in molecules. From their results they can deduce ...

Water can be very dead, electrically speaking

June 21, 2018

In a study published in Science this week, the researchers describe the dielectric properties of water that is only a few molecules thick. Such water was previously predicted to exhibit a reduced electric response but it ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Hyperfuzzy
not rated yet May 31, 2018
In other words the unknown is unknown and the known is ignored, i.e. source. Not Science.
ZoeBell
not rated yet May 31, 2018
which means that we can slow down a quantum system by the mere act of observing it frequently. This is interesting, as it leads to environmental noise, which normally makes a system incoherent, Here, it made the system more coherent
This is not paradoxical at all, if we realize that the observer himself is highly coherent (it must be or he couldn't made coherent observations). During observation the observer becomes entangled with object observed (it manifest itself subjectively as so-called collapse of wave function which is nothing else than the synchronizing of wave function of observer with those of object observed). Once the wave function of observed object gets synchronized with more coherent observer, then it itself also gets more coherent.

Frankly this is nothing new, just a new interpretation of quantum Zeno effect.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.