Scientists create gold nanoparticles in water

April 19, 2018 by Ker Than, Stanford University
Gold nanoparticles are attached to threads of gold nanowires. Both structures were formed using a novel redox reaction involving water microdroplets. (Image credit: . Credit: Jae Kyoo Lee

An experiment that, by design, was not supposed to turn up anything of note instead produced a "bewildering" surprise, according to the Stanford scientists who made the discovery: a new way of creating gold nanoparticles and nanowires using water droplets.

The technique, detailed April 19 in the journal Nature Communications, is the latest discovery in the new field of on-droplet chemistry and could lead to more environmentally friendly ways to produce nanoparticles of and other metals, said study leader Richard Zare, a chemist in the School of Humanities and Sciences and a co-founder of Stanford Bio-X.

"Being able to do reactions in water means you don't have to worry about contamination. It's green chemistry," said Zare, who is the Marguerite Blake Wilbur Professor in Natural Science at Stanford.

Noble metal

Gold is known as a noble metal because it is relatively unreactive. Unlike base metals such as nickel and copper, gold is resistant to corrosion and oxidation, which is one reason it is such a popular metal for jewelry.

Around the mid-1980s, however, scientists discovered that gold's chemical aloofness only manifests at large, or macroscopic, scales. At the nanometer scale, are very chemically reactive and make excellent catalysts. Today, gold nanostructures have found a role in a wide variety of applications, including bio-imaging, drug delivery, toxic gas detection and biosensors.

Until now, however, the only reliable way to make gold nanoparticles was to combine the gold precursor chloroauric acid with a reducing agent such as sodium borohydride.

The reaction transfers electrons from the reducing agent to the chloroauric acid, liberating gold atoms in the process. Depending on how the then clump together, they can form nano-size beads, wires, rods, prisms and more.

A spritz of gold

Recently, Zare and his colleagues wondered whether this gold-producing reaction would proceed any differently with tiny, micron-size droplets of chloroauric acid and sodium borohydide. How large is a microdroplet? "It is like squeezing a perfume bottle and out spritzes a mist of microdroplets," Zare said.

From previous experiments, the scientists knew that some chemical reactions proceed much faster in microdroplets than in larger solution volumes.

Indeed, the team observed that gold nanoparticle grew over 100,000 times faster in microdroplets. However, the most striking observation came while running a control experiment in which they replaced the reducing agent - which ordinarily releases the gold particles - with microdroplets of water.

"Much to our bewilderment, we found that gold nanostructures could be made without any added reducing agents," said study first author Jae Kyoo Lee, a research associate.

Viewed under an electron microscope, the gold nanoparticles and nanowires appear fused together like berry clusters on a branch.

The surprise finding means that pure water microdroplets can serve as microreactors for the production of gold nanostructures. "This is yet more evidence that reactions in can be fundamentally different from those in bulk water," said study coauthor Devleena Samanta, a former graduate student in Zare's lab and co-author on the paper.

If the process can be scaled up, it could eliminate the need for potentially toxic reducing agents that have harmful health side effects or that can pollute waterways, Zare said.

It's still unclear why water microdroplets are able to replace a reducing agent in this reaction. One possibility is that transforming the water into microdroplets greatly increases its , creating the opportunity for a strong electric field to form at the air-water interface, which may promote the formation of and nanowires.

"The surface area atop a one-liter beaker of water is less than one square meter. But if you turn the in that beaker into microdroplets, you will get about 3,000 square meters of surface area - about the size of half a football field," Zare said.

The team is exploring ways to utilize the nanostructures for various catalytic and biomedical applications and to refine their technique to create gold films.

"We observed a network of nanowires that may allow the formation of a thin layer of nanowires," Samanta said.

Explore further: Miniature droplets could solve an origin-of-life riddle

More information: Jae Kyoo Lee et al. Spontaneous formation of gold nanostructures in aqueous microdroplets, Nature Communications (2018). DOI: 10.1038/s41467-018-04023-z

Related Stories

Gold and silver nano baubles

December 3, 2010

They might just be the smallest Christmas tree decorations ever. Tiny spherical particles of gold and silver that are more than 100 million times smaller than the gold and silver baubles used to decorate seasonal fir trees ...

Recommended for you

Twisted electronics open the door to tunable 2-D materials

August 16, 2018

Two-dimensional (2-D) materials such as graphene have unique electronic, magnetic, optical, and mechanical properties that promise to drive innovation in areas from electronics to energy to materials to medicine. Columbia ...

Flexible color displays with microfluidics

August 16, 2018

A new study published on Microsystems and Nanoengineering by Kazuhiro Kobayashi and Hiroaki Onoe details the development of a flexible and reflective multicolor display system that does not require continued energy supply ...

Novel sensors could enable smarter textiles

August 16, 2018

A team of engineers at the University of Delaware is developing next-generation smart textiles by creating flexible carbon nanotube composite coatings on a wide range of fibers, including cotton, nylon and wool. Their discovery ...

Scientists discover why silver clusters emit light

August 16, 2018

Clusters of silver atoms captured in zeolites, a porous material with small channels and voids, have remarkable light-emitting properties. They can be used for more efficient lighting applications as a substitute for LED ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.