Super sniffer: Dog's nose inspires new gas sensor materials

March 7, 2018, American Chemical Society
Super sniffer: Dog's nose inspires new gas sensor materials
Credit: American Chemical Society

It is well known that dogs have a better sense of smell than humans. For years, researchers have been trying to develop an artificial detector that is just as good as a canine's nose. Now, one group reports in ACS Nano that they were able to mimic a dog's sniffer with graphene-based nanoscrolls.

The inside of a dog's is lined with millions of tiny capillaries, which creates a super-sensitive sense of smell. Since the capillaries cover such a large surface area, they can detect odors at extremely low concentrations. Drawing inspiration from the capillary in the dog nose, scientists have been trying to mimic it to create a sensitive gas detector. Previous studies have had some success in using -based nanoscrolls (GNS), which are nanosheets of graphene rolled up in continuous and uniform manner. These nanoscrolls have a , are stable at high temperatures, and are strong and durable. But they are also difficult to manufacture, consume a lot of energy and difficult to scale up. And past studies have used raw graphene or modified graphene that either left behind some unrolled structures, or shriveled up and aggregated, respectively. So Yao Wang, Lei Jiang, Guofu Zhou and colleagues wanted to modify the graphene with a polymer to make high-quality nanoscrolls.

The group prepared graphene-based nanoscrolls with the addition of poly(sodium-p-stryrenesulfonate) using the freeze-drying method to create uniform, unaggregated structures. Upon examination, the nanoscrolls had a wide, tubular shape, and almost all of the graphene was rolled up. The researchers then incorporated the nanoscrolls into a gas sensor, which was highly selective and sensitive. Lastly, the team notes that this method has the potential for large-scale production.

Explore further: Graphene nanoscrolls are formed by decoration of magnetic nanoparticles

More information: Zhuo Chen et al. Mimicking a Dog's Nose: Scrolling Graphene Nanosheets, ACS Nano (2018). DOI: 10.1021/acsnano.7b08294

Abstract
Inspired by the densely covered capillary structure inside a dog's nose, we report an artificial nanostructure, i.e., poly(sodium p-styrenesulfonate)-functionalized reduced graphene oxide nanoscrolls (PGNS), with high structural perfection and efficient gas sensing applications. A facile supramolecular assembly is introduced to functionalize graphene with the functional polymer, combined with the lyophilization technique to massively transform the planar graphene-based nanosheets to nanoscrolls. Detailed characterizations reveal that the bioinspired nanoscrolls exhibit a wide-open tubular morphology with uniform dimensions that is structurally distinct from the previously reported ones. The detailed morphologies of the graphene-based nanosheets in each scrolling stage during lyophilization are monitored by cryo-SEM. This unravels an asymmetric polymer-induced graphene scrolling mechanism including the corresponding scrolling process, which is directly presented by molecular dynamics simulations. The fabricated PGNS sensors exhibit superior gas sensing performance with reliable repeatability, excellent linear sensibility, and, especially, an ultrahigh response (Ra/Rg = 5.39, 10 ppm) toward NO2. The supramolecular assembly combined with the lyophilization technique to fabricate PGNS provides a strategy to design biomimetic materials for gas sensors and chemical trace detectors.

Related Stories

A new radiation detector made from graphene

February 6, 2018

Graphene is a remarkable material: light, strong, transparent and electrically conductive. It can also convert heat to electricity. Researchers have recently exploited this thermoelectric property to create a new kind of ...

Recommended for you

Atomic-scale ping-pong

June 20, 2018

New experiments by researchers at the National Graphene Institute at the University of Manchester have shed more light on the gas flow through tiny, angstrom-sized channels with atomically flat walls.

Chameleon-inspired nanolaser changes colors

June 20, 2018

As a chameleon shifts its color from turquoise to pink to orange to green, nature's design principles are at play. Complex nano-mechanics are quietly and effortlessly working to camouflage the lizard's skin to match its environment.

Method could help boost large scale production of graphene

June 19, 2018

The measure by which any conductor is judged is how easily, and speedily, electrons can move through it. On this point, graphene is one of the most promising materials for a breathtaking array of applications. However, its ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.