Low pressure reduces bubble trouble

March 29, 2018, King Abdullah University of Science and Technology
Sigurdur Thoroddsen and his team from KAUST set up an experiment to test whether bubble formation would be suppressed at lower air pressures. The team created a vacuum chamber equipped with a high-speed camera to observe droplet bubble formation. Credit: King Abdullah University of Science and Technology

Spray coating and inkjet-based electronics manufacture are among the industrial applications in which liquid droplets are applied to a surface. But minuscule air bubbles that get trapped beneath the droplet as it lands can affect the coating's quality and uniformity.

Sigurdur Thoroddsen and his team from KAUST set up an experiment to test whether bubble formation would be suppressed at lower air pressures. The team created a vacuum chamber equipped with a to observe droplet bubble formation. "Reducing the air pressure had many advantages, including decreasing the bubble size and suppressing splashing," says Kenneth Langley,Thoroddsen's Ph.D. student. But there's a sweet spot, he adds. "We discovered that if you reduce the pressure too much, you will entrain more than at higher pressures."

At these low pressures, the team observed the usual central disk of air is trapped, but the droplet then unexpectedly trapped a second, outer ring of air, which quickly collapsed into individual bubbles (high-speed camera images captured 0.1 microseconds, 1.3 microseconds and 18 microseconds after first contact of the liquid droplet on the glass platform).

At these low pressures, the team observed the usual central disk of air is trapped, but the droplet then unexpectedly trapped a second, outer ring of air, which quickly collapsed into individual bubbles (above image; from left to right, high-speed camera images captured 0.1 microseconds, 1.3 microseconds and 18 microseconds after first contact of the liquid droplet on the glass platform). Credit: KAUST

Explore further: A way to create liquid droplets inside of air bubbles

More information: Er Qiang Li et al. Double Contact During Drop Impact on a Solid Under Reduced Air Pressure, Physical Review Letters (2017). DOI: 10.1103/PhysRevLett.119.214502

Related Stories

A way to create liquid droplets inside of air bubbles

February 8, 2018

A team of researchers at Zhejiang University in China has developed a technique to create liquid droplets inside of air bubbles. In their paper published in the journal Physical Review Letters, the group describes the technique ...

Bubble study could improve industrial splash control

December 13, 2012

(Phys.org)—For the first time, scientists witnessed the details of the full, ultrafast process of liquid droplets evolving into a bubble when they strike a surface. Their research determined that surface wetness affects ...

Researchers identify movement of droplets on soft surfaces

August 5, 2015

Researchers from the University of Twente have succeeded in clearly identifying why droplets on soft, squishy surfaces react differently than on hard surfaces. A water droplet, for example, moves very differently over jelly ...

Soap bubbles' secrets go pop

February 23, 2016

Some phenomena that appear to be well understood are much more mysterious than it seems. In spite of the numerous applications that rely on the presence or absence of bubbles, no advanced scientific studies had been carried ...

Recommended for you

When electric fields make spins swirl

November 14, 2018

We are reaching the limits of silicon capabilities in terms of data storage density and speed of memory devices. One of the potential next-generation data storage elements is the magnetic skyrmion. A team at the Center for ...

Dark matter 'hurricane' offers chance to detect axions

November 13, 2018

A team of researchers from Universidad de Zaragoza, King's College London and the Institute of Astronomy in the U.K. has found that a "dark matter hurricane" passing through our solar system offers a better than usual chance ...

Structure of fossil-fuel source rocks is finally decoded

November 13, 2018

The fossil fuels that provide much of the world's energy orginate in a type of rock known as kerogen, and the potential for recovering these fuels depends crucially on the size and connectedness of the rocks' internal pore ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.