Observing and controlling ultrafast processes with attosecond resolution

February 21, 2018, Technical University Munich
Prof. Dr. Birgitta Bernhardt with the measuring set-up at the Department of Physics at the Technical University of Munich. Credit: Michael Mittermair / TUM

Many chemical processes run so quickly that they are only roughly understood. To clarify these processes, a team from the Technical University of Munich (TUM) has now developed a methodology with a resolution of quintillionths of a second. The new technology could enhance the understanding of processes like photosynthesis and contribute to the development of faster computer chips.

An important intermediary step in many is . A typical example of this is photosynthesis. The reactions take only a few femtoseconds (quadrillionths of a second), or even a few hundred attoseconds (quintillionths of a second). Because they run so extremely fast, only the initial and final products are known, but not the reaction paths or the intermediate products.

To observe such ultrafast processes, science needs a measurement technology that is faster than the observed process itself. So-called "pump-probe spectroscopy" makes this possible. Here, the sample is excited using an initial laser pulse, which sets the reaction into motion. A second, time-delayed pulse queries the momentary state of the process. Multiple repetitions of the reaction with different time delays result in individual stop-motion images, which can then be compiled into a film clip.

Now, a team of scientists headed by Birgitta Bernhardt at TU Munich have combined two pump-probe spectroscopy techniques using the inert gas krypton. This allowed them to visualize the ultrafast ionization processes with a precision that was previously impossible.

View into the measuring chamber combining two pump-probe spectroscopy techniques thus allowing to observe and control ultrafast processes with attosecond resolution. Credit: Michael Mittermair / TUM

"Prior to our experiment, one could observe either which part of the exciting light was absorbed by the sample over time or measure what kind of and how many ions were created in the ," explains Bernhardt. "We have now combined the two techniques, which allows us to observe the precise steps by which the ionization takes place, how long these intermediate products exist and what precisely the exciting laser pulse causes in the sample."

Ultrafast processes under control

The combination of the two measuring techniques allows the scientists to record the ultrafast ionization processes and, thanks to the variation in the intensity of the second probing laser pulse, they can also control and influence the ionization dynamics.

"This kind of control is a very powerful instrument," explains Bernhardt. "If we can precisely understand and even influence fast ionization processes, we are able to learn a lot about light-driven processes like photosynthesis—especially about the initial moments in which this complex machinery is set into motion and which was not understood to date."

The technology developed by Bernhardt and her colleagues is also interesting for the development of new, faster computer chips in which the ionization of silicon plays a significant role. If the ionization states of silicon can not only be sampled on such a short time scale, but can also be set—as the first experiments with krypton suggest—scientists might one day be able to use this to develop novel and even faster computer technologies.

Explore further: The world's shortest laser pulse

More information: Konrad Hütten et al, Ultrafast quantum control of ionization dynamics in krypton, Nature Communications (2018). DOI: 10.1038/s41467-018-03122-1

Related Stories

The world's shortest laser pulse

October 27, 2017

ETH researchers succeeded in shortening the pulse duration of an X‑ray laser to only 43 attoseconds. With a time resolution in the range of a few quintillionths of a second, they are now able for the first time to observe ...

Extreme lasers at work

November 26, 2010

Under extremely intense illumination materials may exhibit so-called nonlinear optical properties such as ceasing to absorb light beyond a certain brightness, or becoming highly ionized. Yasumasa Hikosaka, Mitsuru Nagasono ...

Recommended for you

Quantum speed limits are not actually quantum

March 15, 2018

Quantum mechanics has fundamental speed limits—upper bounds on the rate at which quantum systems can evolve. However, two groups working independently have published papers showing for the first time that quantum speed ...

Thermally driven spin current in DNA

March 15, 2018

An emerging field that has generated a wide range of interest, spin caloritronics, is an offshoot of spintronics that explores how heat currents transport electron spin. Spin caloritronics researchers are particularly interested ...

The view from inside supersonic combustion

March 15, 2018

In a jet engine, the flow of air is slowed down to increase the temperature and pressure for combustion—burning fuel with the right ratio of fuel and air to conquer drag allows for acceleration.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.