Study shines new light on how Salmonella 'die' at low temperatures

Study shines new light on how Salmonella 'die' at low temperatures
Under mild heat shock, Salmonella dies mainly due to leakage of small cytoplasmic molecules. Credit: Jennifer McCann / Penn State

The most economical way to kill bacteria that cause common food-borne illnesses—mostly caused by Salmonella enterica—is heat, but, the mechanisms that kill Salmonella at lower temperatures were not fully understood until now, according to a team of researchers.

Bacteria can develop ways to cope with heat shock, so it is important to develop a complete understanding of how heat kills them, the researchers said.

Using droplet-based electrical sensors she developed while a doctoral student at Purdue University, Aida Ebrahimi, assistant professor of electrical engineering, Penn State, determined that mild heat stress at temperatures around 120 degrees Fahrenheit damages the bacteria's without rupturing them.

"We had a hypothesis that the Salmonella bacterium might die due to leakage of the cell wall," Ebrahimi said. "If you heat them, the lipids that make up the cell wall vibrate. As the cell wall weakens, it can allow small molecules to leak out. Because these small molecules are mostly ionic, we expected a change of the electrical conductance."

In order to prove their hypothesis, the team developed a sensor that was sensitive to the changes in of the growth medium. As the bacteria's cell wall lost integrity, charged molecules were ejected from the into the solution containing the bacteria, and consequently the electrical conductivity of the solution changed.

The researchers conducted multiple experiments using both wild-type and heat-resistant Salmonella bacteria and correlated the electrical results with fluorescence measurement and standard microbiology protocols. The modified bacteria required higher energy to make the cell membranes permeable enough to leak . The team also studied heating time and heating method, either a slower ramp-up of heat or a sudden pulse of heat, and found that pulsed heat was more effective at killing bacteria.

The authors of the paper appearing in the current issue of in Biophysical Journal then developed an analytical model based on their experiments that correlated membrane damage, cytoplasmic leakage and cell death. By better understanding the mechanisms of bacterial death at elevated temperatures, these findings can potentially improve food safety strategies and provide more efficient ways to deactivate bacteria using shorter duration of heating at lower temperatures.

"We know how kill bacteria," Ebrahimi said. "But we wanted to find out why Salmonella died at lower temperatures. There are benefits to using lower temperatures, such as saving energy and retaining better nutritional quality, compared to food heated to high temperatures. But more importantly, can develop resistance to heat shock, so it is important to know how they respond to shock."


Explore further

Electronic sensor that distinguishes dead bacteria from live by measuring 'osmoregulation'

More information: "Analyzing Thermal Stability of Cell Membrane of Salmonella using Time-Multiplexed Impedance Sensing," Biophysical Journal (2018).
Journal information: Biophysical Journal

Citation: Study shines new light on how Salmonella 'die' at low temperatures (2018, February 6) retrieved 22 May 2019 from https://phys.org/news/2018-02-salmonella-die-temperatures.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
82 shares

Feedback to editors

User comments

Feb 06, 2018
Brings to my mind the question - if fast-pulse heating is more efficient against bacteria? Does that mean that nuking our food in the microwave is any safer than stove-top or slow cookers?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more