Understanding the wetting of micro-textured surfaces can help give them new functionalities

February 22, 2018, Springer
Understanding the wetting of micro-textured surfaces can help give them new functionalities
Snapshots of contact line configurations when water droplets slide on surfaces with micro-pillars. Credit: S. Qiao, Q. Li and X. Q. Feng (2018), Sliding friction and contact angle hysteresis of droplets on micro-hole-structured surfaces, Eur. Phys. Jour. E 41:25, DOI 10.1140/epje/i2018-11631-x

The wetting and adhesion characteristics of solid surfaces critically depend on their fine structures. However, until now, our understanding of exactly how the sliding behaviour of liquid droplets depends on surface microstructures has been limited. Now, physicists Shasha Qiao, Qunyang Li and Xi-Qiao Feng from Tsinghua University in Beijing, China have conducted experimental and theoretical studies on the friction of liquid droplets on micro-structured surfaces.

In a paper published in EPJ E, the authors found that under the same solid fraction, friction on surfaces with a structure made up of micro-holes is much higher than that on surfaces patterned with an array of pillars. Such micro-structured surfaces have helped design new surfaces that mimic surfaces found in nature, such as , reduced-drag surfaces, surfaces capable of transporting liquids in microfluidic systems, variants with anti-icing or heat transfer properties, and even surfaces that facilitate oil-water separation.

In this study, the authors focus on the sliding behaviour of a droplet on micro-hole-structured surfaces. Recently, the same group of physicists showed that the percentage of space occupied by solids for a unit-area can indeed significantly affect ' sliding behaviour on surfaces with micro-pillar structures.

In this study, the authors demonstrate that the continuity of the surface micro-structures can also alter droplets' sliding behaviour considerably. They show that the sliding friction increased with increasing solid area fraction. This conclusion was experimentally validated by actively sliding a water droplet on with micro-holes and micro-pillars of various sizes while simultaneously measuring the resultant sliding friction forces.

The authors then explain the contrast in between micro-hole and micro-pillar surfaces qualitatively by developing an improved theoretical model, which extends the classic wetting mechanics model by considering a finite effective width of the solid-liquid-gas contact line.

Explore further: Team develops innovative, ideal liquid-repellent surfaces

More information: Shasha Qiao et al, Sliding friction and contact angle hysteresis of droplets on microhole-structured surfaces, The European Physical Journal E (2018). DOI: 10.1140/epje/i2018-11631-x

Related Stories

Team develops innovative, ideal liquid-repellent surfaces

November 14, 2017

On liquid-repellent surfaces, liquid droplets bounce away instead of being stuck. These surfaces are important in many fields, such as water-repellent clothes and anti-fouling kitchenware. Used as drag-reduction coatings ...

Researchers identify movement of droplets on soft surfaces

August 5, 2015

Researchers from the University of Twente have succeeded in clearly identifying why droplets on soft, squishy surfaces react differently than on hard surfaces. A water droplet, for example, moves very differently over jelly ...

Recommended for you

Researchers make shape shifting cell breakthrough

December 11, 2018

A new computational model developed by researchers from The City College of New York and Yale gives a clearer picture of the structure and mechanics of soft, shape-changing cells that could provide a better understanding ...

Novel laser technology for microchip-size chemical sensors

December 11, 2018

Most lasers emit photons of exactly the same wavelength, producing a single color. However, there are also lasers that consist of many frequencies, with equal intervals in between, as in the teeth of a comb; thus, they are ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.