Scientists achieve high power with new smaller laser

January 24, 2018, Toyohashi University of Technology
The first high-powered, randomly polarized laser beam with a 'Q switch' laser. Optical pulses were controlled by electrical signals. Credit: (c) Toyohashi University Of Technology.

An international team of scientists has produced the first high-powered, randomly polarised laser beam with a "Q switch" laser, which typically emits pulses of light so brief that they're measured in nanoseconds. Lasers are a critical part of modern technology—they're used in everything from our automobiles to medical equipment to the satellites orbiting Earth. Now, researchers are broadening the potential applications of even smaller and more powerful lasers.

The researchers published their results in Scientific Reports.

"The experimental evidence provided in this study advances this research field toward the realization of actively controllable integrated micro lasers," wrote Taichi Goto, second author of the paper and an assistant professor in the department of electrical and electronic information engineering at the Toyohashi University of Technology in Japan.

Other study contributors include scientists from the Institute for Molecular Science at the Laser Research Centre in Japan and the Electrical and Computer Engineering Department at Iowa State University in the United States.

Q switch lasers are used in a variety of applications, including in surgical procedures, and can produce more precise results with less damage than traditional tools. The lasers require integration of active and passive responsibilities for maximum efficiency.

Obtained optical pulse. The peak power was about 1 kW. The pulse width was 25 ns. Credit: (c) Toyohashi University Of Technology.
"There are two advantages to actively controlling integrated micro lasers," said Goto. "The size is small, and mass production technique can be used. The price of one piece of Q switch laser can be decreased by the integration."

A technique called Q switching produces short but high-powered pulse outputs. As in other lasers, an electric current excites electrons in a laser medium—in this case, it's a crystal used in solid-state lasers—and emits the resulting energy as amplified . The light can be polarized in one direction or another, but it's nearly impossible to change the randomly polarized light in a small Q switch laser.

Goto and his team used Q switching, along with a laser a tenth of the size of an American penny, to produce a ten times more powerful than previously reported with a larger laser.

Along with the change of laser size, the researchers also adjusted the magnetic material through which the light travels and amplifies to a more powerful pulse. With the addition of a neodymium-yttrium-aluminum-garnet, Goto could use magneto-optics to better control how the light moves within the laser cavity.

For the first time, the randomly polarized (unpolarized) light was generated using an magneto-optical Q-switched laser in this work, opening a new field of applications. Credit: (c) Toyohashi university of technology.

The short pulses allow the researchers to change the polarization of the laser through manipulation of the photons comprising the light. Instead of a constant light, each pulse can be switched. The laser size means the energy punches out, instead of dissipating as it travels inside the system.

The researchers plan to increase the peak power of their system, according to Goto. They also plan to apply the system as an integrated micro for further testing.

Explore further: Quantum dot ring lasers emit colored light

More information: Ryohei Morimoto et al, Randomly polarised beam produced by magnetooptically Q-switched laser, Scientific Reports (2017). DOI: 10.1038/s41598-017-15826-3

Related Stories

Quantum dot ring lasers emit colored light

January 22, 2018

Researchers have designed a new type of laser called a quantum dot ring laser that emits red, orange, and green light. The different colors are emitted from different parts of the quantum dot—red from the core, green from ...

Japanese team fires world's most powerful laser

July 29, 2015

(Phys.org)—A team of researchers and engineers at Japan's Osaka University is reporting that they have successfully fired what they are claiming is the world's most powerful laser. In their paper published in the journal ...

Recommended for you

Compelling evidence for small drops of perfect fluid

December 10, 2018

Nuclear physicists analyzing data from the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC)—a U.S. Department of Energy (DOE) Office of Science user facility for nuclear physics research at Brookhaven National ...

Engineers invent groundbreaking spin-based memory device

December 7, 2018

A team of international researchers led by engineers from the National University of Singapore (NUS) have invented a new magnetic device to manipulate digital information 20 times more efficiently and with 10 times more stability ...

Multichannel vectorial holographic display and encryption

December 7, 2018

Holography is a powerful tool that can reconstruct wavefronts of light and combine the fundamental wave properties of amplitude, phase, polarization, wave vector and frequency. Smart multiplexing techniques (multiple signal ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

691Boat
not rated yet Jan 24, 2018
One kw concentrated in 25 Ns, isn't that an average power of about 25 microwatts?

Well, that would be with one pulse per second, if it produced 1 million pulses per second I would assume an average power of 25 watts I wonder what the PRF actually is.

Yeah, your math is right. Most Nd:YAG type lasers I have dealt with don't usually operate in the MHz PRF, usually only up to 10's of kHz, maybe 100kHz. If they can build this thing cheap and it does have a decent power output, that could be a good market, since most pulsed Nd:YAG lasers are cut-throat priced.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.