Taking control at the junction

January 22, 2018, King Abdullah University of Science and Technology
Taking control at the junction
The KAUST team, including Kaikai Liu (left) and Xiaohang Li (right), show that varying boron content enables tuning of the electric polarization at the interface between boron aluminum nitride and boron gallium nitride alloys. Credit: KAUST 2017

Fine tuning the composition of nitride alloys can further the development of optical and electronic interface devices.

Controlling the electronic properties at the interface between materials could help in the quest for improvements in computer memory. KAUST researchers show that varying the atomic composition of -nitride-based enables tuning of an important electronic property known as .

When an electric field is applied to a single atom, it shifts the center of mass of the cloud of negatively charged electrons away from the positively charged nucleus it surrounds. In a crystalline solid, these so-called electric dipoles of all atoms combine to create electric polarization.

Some materials exhibit a , even without an external electric field. Such materials have potential uses in computer memory, however, this application requires a material system in which the polarization is controllable. Visiting student Kaikai Liu, his supervisor Xiaohang Li and coworkers investigated one approach to polarization engineering at the interface between boron-nitride-based alloys.

Spontaneous polarization is strongly dependent on the structure and composition of the atomic crystal. Some materials, known as piezo electrics, can change polarization when physically deformed.

The KAUST team used software called the Vienna ab initio Simulation Package to investigate the electronic properties of the ternary alloys boron nitride and boron nitride. They looked at how they change as boron replaces aluminum and gallium atoms, respectively. "We calculated the spontaneous polarization and piezoelectric constants of boron nitride alloys within a newly proposed theoretical framework and the impact of the polarization at junctions of these two ," says Liu.

The team showed that the spontaneous polarization changes very nonlinearly with increasing boron content; this contradicts previous studies that assume a linear relationship.

The reason for this nonlinearity is attributed to the volume deformation of the alloy's unusual atomic structure, known as wurtzite. The nonlinear change of the piezoelectric polarization is less pronounced, but evident. This arises because of the large difference in atomic spacing between boron nitride and both aluminum nitride and gallium nitride. Furthermore, boron aluminum nitride or boron gallium nitride can become nonpiezoelectric when the boron content is more than 87 percent and 74 percent, respectively.

This work shows that a large range of spontaneous and piezoelectric polarization constants could be made available simply by changing the boron content. This could be useful for developing optical and electronic junction devices formed at the interface between conventional nitride semiconductors and either boron aluminum nitride or boron gallium nitride.

"Our next step will be to experimentally test the proposed junctions, which our theory predicts could have much better device performance than current approaches," says Liu.

Explore further: Semiconductors with an aligned interface

More information: Kaikai Liu et al. Wurtzite BAlN and BGaN alloys for heterointerface polarization engineering, Applied Physics Letters (2017). DOI: 10.1063/1.5008451

Related Stories

Semiconductors with an aligned interface

November 13, 2017

The electronic characteristics of an interface between two wide bandgap semiconductors are determined by researchers at KAUST: an insight that will help improve the efficiency of light-emitting and high-power electronic devices.

Team improves optical efficiency in nanophotonic devices

January 4, 2018

A team of physicists, headed by the U.S. Naval Research Laboratory (NRL), have demonstrated the means to improve the optical loss characteristics and transmission efficiency of hexagonal boron nitride devices, enabling very ...

Map of diamond-boron bond paves way for new materials

June 17, 2016

Scientists in Japan have successfully recorded the atomic bonds between diamond and cubic boron nitride: the hardest known materials on earth. This feat could ultimately lead to the design of new types of semiconductors.

Researchers apply diamond coatings to iron and steel tools

March 17, 2016

Scientists from Tomsk Polytechnic University (TPU) have created coverings for next-generation cutting tools that are not only durable, but also suitable for the treatment of most materials. They have developed a technology ...

Recommended for you

Twisted electronics open the door to tunable 2-D materials

August 16, 2018

Two-dimensional (2-D) materials such as graphene have unique electronic, magnetic, optical, and mechanical properties that promise to drive innovation in areas from electronics to energy to materials to medicine. Columbia ...

Flexible color displays with microfluidics

August 16, 2018

A new study published on Microsystems and Nanoengineering by Kazuhiro Kobayashi and Hiroaki Onoe details the development of a flexible and reflective multicolor display system that does not require continued energy supply ...

Novel sensors could enable smarter textiles

August 16, 2018

A team of engineers at the University of Delaware is developing next-generation smart textiles by creating flexible carbon nanotube composite coatings on a wide range of fibers, including cotton, nylon and wool. Their discovery ...

Scientists discover why silver clusters emit light

August 16, 2018

Clusters of silver atoms captured in zeolites, a porous material with small channels and voids, have remarkable light-emitting properties. They can be used for more efficient lighting applications as a substitute for LED ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.