Related topics: light

Plastic waste in the sea mainly drifts near the coast

The pollution of the world's oceans with plastic waste is one of the major environmental problems of our time. However, very little is known about how much plastic is distributed globally in the ocean. Models based on ocean ...

Researchers model new method of generating gamma-ray combs

Skoltech researchers used the resources of the university's Zhores supercomputer to study a new method of generating gamma-ray combs for nuclear and X-ray photonics and spectroscopy of new materials. The paper was published ...

Simulations examine performance of materials in NIF experiments

Scientists have examined the performance of pure boron, boron carbide, high-density carbon and boron nitride ablators—the material that surrounds a fusion fuel and couples with the laser or hohlraum radiation in an experiment—in ...

Competitor fears Musk's SpaceX could 'monopolise' space

The launching of thousands of satellites into low Earth orbit by tech billionaire Elon Musk's SpaceX threatens the "de-facto monopolisation" of space, the head of competitor Arianespace Stephane Israel has warned.

page 1 from 40

Polarization

Polarization (also polarisation) is a property of waves that describes the orientation of their oscillations. This article primarily covers the polarization of electromagnetic waves such as light, although other types of wave also exhibit polarization.

By convention, the polarization of light is described by specifying the direction of the wave's electric field. When light travels in free space, in most cases it propagates as a transverse wave—the polarization is perpendicular to the wave's direction of travel. In this case, the electric field may be oriented in a single direction (linear polarization), or it may rotate as the wave travels (circular or elliptical polarization). In the latter cases, the oscillations can rotate rightward or leftward in the direction of travel, and which of those two rotations is present in a wave is called the wave's chirality or handedness. In general the polarization of an electromagnetic (EM) wave is a complex issue. For instance in a waveguide such as an optical fiber, or for radially polarized beams in free space, the description of the wave's polarization is more complicated, as the fields can have longitudinal as well as transverse components. Such EM waves are either TM or hybrid modes.

For longitudinal waves such as sound waves in fluids, the direction of oscillation is by definition along the direction of travel, so there is no polarization. In a solid medium, however, sound waves can be transverse. In this case, the polarization is associated with the direction of the shear stress in the plane perpendicular to the propagation direction. This is important in seismology.

Polarization is significant in areas of science and technology dealing with wave propagation, such as optics, seismology, telecommunications and radar science. The polarization of light can be measured with a polarimeter.

This text uses material from Wikipedia, licensed under CC BY-SA