Related topics: solar cells

Light-emitting silicon for photonic computing

If computers transmitted data using photons instead of electrons, they would perform better and use less power. European researchers are now studying a new light-emitting alloy of silicon and germanium to obtain photonic ...

Researchers create electronic diodes beyond 5G performance

David Storm, a research physicist, and Tyler Growden, an electrical engineer, both with the U.S. Naval Research Laboratory, developed a new gallium nitride-based electrical component called a resonant tunneling diode (RTD) ...

Pure red LEDs fulfill a primary goal

Making pure red LEDs from nitride crystals is a goal that has so far frustrated engineers. However, these LEDs are vital for building the next generation of energy-efficient micro-LED displays to follow OLED displays and ...

Physicists trap light in nanoresonators for record time

An international team of researchers from ITMO University, the Australian National University, and Korea University have experimentally trapped an electromagnetic wave in a gallium arsenide nanoresonator a few hundred nanometers ...

New method produces robust transistors

A new method to fit together layers of semiconductors as thin as a few nanometers has resulted in not only a scientific discovery but also a new type of transistor for high-power electronic devices. The result, published ...

page 1 from 27

Gallium

Gallium ( /ˈɡæliəm/ gal-ee-əm) is a chemical element that has the symbol Ga and atomic number 31. Elemental gallium does not occur in nature, but as the gallium(III) salt in trace amounts in bauxite and zinc ores. A soft silvery metallic poor metal, elemental gallium is a brittle solid at low temperatures. As it liquefies slightly above room temperature, it will melt in the hand. Its melting point is used as a temperature reference point, and from its discovery in 1875 to the semiconductor era, its primary uses were in high-temperature thermometric applications and in preparation of metal alloys with unusual properties of stability, or ease of melting; some being liquid at room temperature or below. The alloy Galinstan (68.5% Ga, 21.5% In, 10% Sn) has a melting point of about −19 °C (−2 °F).

In semiconductors, the major-use compound is gallium arsenide used in microwave circuitry and infrared applications. Gallium nitride and indium gallium nitride, minority semiconductor uses, produce blue and violet light-emitting diodes (LEDs) and diode lasers. Semiconductor use is now almost the entire (> 95%) world market for gallium, but new uses in alloys and fuel cells continue to be discovered.

Gallium is not known to be essential in biology, but because of the biological handling of gallium's primary ionic salt gallium(III) as though it were iron(III), the gallium ion localizes to and interacts with many processes in the body in which iron(III) is manipulated. As these processes include inflammation, which is a marker for many disease states, several gallium salts are used, or are in development, as both pharmaceuticals and radiopharmaceuticals in medicine.

This text uses material from Wikipedia, licensed under CC BY-SA