Electrons in the water

January 22, 2018, Argonne National Laboratory
Argonne researchers and their collaborators sought to understand what happens when an electron is injected into water. They found that the electron binds with the water; however, its binding energy is much smaller than previously thought. Credit: Peter Allen/Institute for Molecular Engineering

It's a popular tradition to throw coins into fountains in the hopes of having wishes granted. But what would happen if you could "throw" electrons into the water instead? That is, what happens shortly after an electron is injected into water?

This decades-old question now has an answer, thanks to an article published in Nature Communications on January 16. The study is the result of collaboration among researchers at the University of Chicago, the U.S. Department of Energy's (DOE) Argonne and Lawrence Livermore National Laboratories, and the University of California—San Diego.

Until now, scientists faced technical challenges when they wanted to experimentally measure the electron affinity of water, said Professor Giulia Galli, Liew Family Professor at the Institute for Molecular Engineering at the University of Chicago and senior scientist at Argonne.

"Most of the results quoted in the literature as experimental numbers are actually values obtained by combining some measured quantities with crude theoretical estimates," she said.

Accurate theoretical measurements, on the other hand, have been out of reach for some time due to the difficulty and high computational cost of simulating the interactions directly, said University of California-San Diego professor Francesco Paesani, a co-author of the study who has spent years developing an accurate potential for the modeling of .

The interaction potential between water molecules developed by Paesani was used to model the structure of both liquid water and the water's surface. Once the structure was obtained, highly accurate theoretical methods and software to study excited states of matter, developed by Galli's team, were used to understand what happens when an electron is injected into water.

Fundamentally, the researchers sought to understand whether the electron resides in the liquid and eventually participates in chemical reactions. The central question was, "Does the liquid bond with the electron right away?"

The researchers found that the electron binds with the water; however, its binding energy is much smaller than previously thought. This prompted the researchers to revisit a number of well-accepted data and models for the electron affinity of water.

Galli and her co-workers developed the methods for used in this study over the years, in collaborations with T. A. Pham, from Lawrence Livermore, and Marco Govoni, from Argonne, both of whom are co-authors of this study.

"Using the software developed to study excited state phenomena in realistic systems (named Without Empty STates, or WEST) and the Argonne Leadership Computing Facility (ALCF), we were finally able to generate data for samples both large enough and on sufficiently long timescales to study the electron affinity of liquid water," Govoni said.

"We found large differences between the affinity at the surface and in the bulk liquid. We also found values that were different from those accepted in the literature, which prompted us to revisit the full energy diagram of an electron in water," Pham added.

This finding has important consequences, both for scientists who seek to fundamentally understand the properties of water and for those who want to describe reduction/oxidation reactions in aqueous solutions, which are widespread in chemistry and biology.

In particular, scientists often use information about the energy levels of water when they screen materials for photo-electrochemical cells. A reliable estimate of the water (which the researchers of the study provided for both bulk and its surface) will help scientists establish computational protocols that are more robust and more reliable, and improve computational screening of materials.

Explore further: Scientists explore electronic properties of liquid electrolytes for energy technologies

More information: Alex P. Gaiduk et al. Electron affinity of liquid water, Nature Communications (2018). DOI: 10.1038/s41467-017-02673-z

Related Stories

Breaking bad metals with neutrons

January 11, 2018

By exploiting the properties of neutrons to probe electrons in a metal, a team of researchers led by the U.S. Department of Energy's (DOE) Argonne National Laboratory has gained new insight into the behavior of correlated ...

Looking to the sun to create hydrogen fuel

January 18, 2018

When Lawrence Livermore scientist Tadashi Ogitsu leased a hydrogen fuel-cell car in 2017, he knew that his daily commute would change forever. There are no greenhouse gases that come out of the tailpipe, just a bit of water ...

Supercomputer Study of Water

February 27, 2006

Familiar as it is, there's a lot we don't know about water -- such as the structure taken up by liquid water molecules. With a grant of time on one of the fastest computers in the U.S., researchers at UC Davis, Lawrence Livermore ...

Electronic entropy enhances water splitting

October 24, 2017

Researchers have long known that cerium is the best element to use when splitting water into hydrogen and oxygen—a key technique in creating hydrogen gas for fuel. But why, exactly, cerium is so successful has been far ...

Recommended for you

The environmental cost of contact lenses

August 19, 2018

Many people rely on contact lenses to improve their vision. But these sight-correcting devices don't last forever—some are intended for a single day's use—and they are eventually disposed of in various ways. Now, scientists ...

When sulfur disappears without trace

August 17, 2018

Many natural products and drugs feature a so-called dicarbonyl motif— in certain cases, however, their preparation poses a challenge to organic chemists. In their most recent work, Nuno Maulide and his coworkers from the ...

Microfluidic chip for analysis of single cells

August 17, 2018

A few little cells that are different from the rest can have a big effect. For example, individual cancer cells may be resistant to a specific chemotherapy—causing a relapse in a patient who would otherwise be cured. In ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.