Chemical engineers discover how some bacteria resist threats

January 26, 2018, University of Delaware
Chemical engineers discover how some bacteria resist threats
A bioreactor is used to encourage the growth and evolution of the bacteria under investigation. Credit: University of Delaware/ Evan Krape

Bacteria are stealthy organisms. They can multiply in minutes and evolve to survive what we throw at them—including antibiotics.

The World Health Organization calls antibiotic resistance "one of the biggest threats to global health, food security, and development today." Each year, about 2 million people in the United States become infected with antibiotic-resistant , according to the Centers for Disease Control. These infections are difficult to treat and increasingly deadly.

In the face of this threat, scientists want to figure out exactly how bacteria evolve.

A team from the University of Delaware and University of California, San Diego recently uncovered new insights about how E. coli bacteria mutate in response to a life-threatening challenge. Their results were published in Proceedings of the National Academy of Sciences (PNAS).

A unique approach

"We wanted to study how cells recover from a major blow," said co-author Maciek R. Antoniewicz, Centennial Professor of Chemical and Biomolecular Engineering at the University of Delaware.

UD graduate engineering students Christopher Long and Jacqueline Gonzalez co-authored the paper with Antoniewicz.

To do this, the team brought together two experimental methods that aren't typically used in tandem: whole-genome sequencing and metabolic flux analysis.

"One of the novelties of this paper is that we used two complementary approaches to elucidate how these cells evolved," Antoniewicz said. "This is one of the first times both approaches were combined to see a link between genotype and phenotype."

At UC-San Diego, Adam Feist, an associate project scientist in bioengineering, and Bernhard Palsson, the Galletti Professor of Bioengineering, modified and then evolved ten strains of E. coli bacteria. They knocked out the ' ability to utilize phosphoglucose isomerase, an enzyme that plays a critical role in the metabolism of glucose, a sugar. Robbing E. coli cells of the phosphoglucose isomerase enzyme is akin to starving them, stunting their growth by 80 percent.

However, as these E. coli cells evolved and multiplied, they eventually recovered between 46 and 71 percent of their growth rate.

The research team then used genomic analysis and flux analysis to figure out how the cells mutated and adapted to recover. Antoniewicz is a leading expert in flux analysis, so those experiments happened at the University of Delaware.

Antoniewicz, Long, and Gonzalez found three mutations, in the genes sthA, pntAB, and crr, that helped the E. coli cells recover growth. These mutations helped the speed up metabolic steps that had been hampered by the absence of phosphoglucose isomerase.

"It's fascinating that you can get rid of one of the most important genes in glucose metabolism and the cell will recover," Antoniewicz said. "This is evidence of the great flexibility of biological systems."

However, this adaptability is a blessing and a curse, as in the case of .

"Cells are flexible and nimble," he said. "If you want to stop them from growing, using a single target may not be enough."

Next, the team is studying a new set of E. coli strains with different characteristics.

Explore further: Team reports new role for enzyme involved in bacterial metabolism

More information: Christopher P. Long et al. Dissecting the genetic and metabolic mechanisms of adaptation to the knockout of a major metabolic enzyme inEscherichia coli, Proceedings of the National Academy of Sciences (2017). DOI: 10.1073/pnas.1716056115

Related Stories

New mechanism to fight multi-resistant bacteria revealed

April 19, 2017

In recent years, scientists, clinicians and pharmaceutical companies have struggled to find new antibiotics or alternative strategies against multi-drug resistant bacteria that represent a serious public health problem. In ...

Model predicts how E. coli bacteria adapt under stress

October 13, 2017

Researchers at the University of California San Diego have developed a genome-scale model that can accurately predict how E. coli bacteria respond to temperature changes and genetic mutations. The work is aimed at providing ...

Bacteria take a deadly risk to survive

May 2, 2017

Bacteria need mutations—changes in their DNA code—to survive under difficult circumstances. When necessary, they can even mutate at different speeds. This is shown in a recent study by the Centre of Microbial and Plant ...

Recommended for you

Single-cell database to propel biological studies

April 20, 2018

A team at Whitehead Institute and MIT has harnessed single-cell technologies to analyze over 65,000 cells from the regenerative planarian flatworm, Schmidtea mediterranea, revealing the complete suite of actives genes (or ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.