It´s a matter of gradients

December 6, 2017, Ludwig Maximilian University of Munich
It´s a matter of gradients
Credit: P. Rona / NOAA Photo Library

Thermophoresis for the energy supply of early cells. NIM scientist Dr Christof Mast and his team suggest thermally driven formation of pH gradients and proton flux as source of chemical energy conversion in early stages of life.

The transport of positively charged protons along a pH gradient serves to generate energy in cellular systems where membranes maintain the gradient. Without a membrane containing highly developed pump proteins, it will be difficult to prevent protons from rebalancing their concentration in the liquid immediately. A team led by the LMU biophysicist Christof Mast in Professor Dieter Braun's research group has discovered a process that can produce pH differences even without membranes only with the help of a heat flow through a water-filled pore. Thermal energy is converted into chemically usable energy.

"Living use pH differences as the universal driving force of their cell power plants," explains Mast. Approximately four billion years ago, before the evolution of proton pumps, other mechanisms were needed to generate pH gradients. "On the early earth, thermally driven formation of pH gradients could have been achieved near heat sources in porous rock," adds Lorenz Keil, the first author of the publication in Nature Communications.

Proton flux as source of energy

Similar to the energy generation from water flowing along a height difference in hydro power stations, cells can produce by the controlled equalization of protons along a pH difference through a membrane. Such pH differences also played an important role in the evolution of the most important molecular building blocks of life, such as ribonucleic acid (RNA) and various amino acids on the early earth.

The heat flow, as it occurs for example in oceanic hydrothermal fields, creates a temperature difference between the opposite sides of the pore and causes two decisive effects: biomolecules migrate through the so-called thermophoresis along the temperature difference to the cold side. At the same time, a convective flow develops in the pore by the sinking of the slightly denser water on the cold side and the rise of the lighter water on the hot side. The interaction of both mechanisms concentrates higher charged molecules on the bottom of the pore. There, they can absorb free protons and thus establish a higher pH compared to the upper regions of the pore.

Motor of the first cells on earth?

Driven by thermal convection, the first cells could have cycled between regions with different pH-values. The comparatively fast transport of vesicles could cause a proton gradient across proto-cellular membranes, which is done by sophisticated pumps in their modern relatives. "Applying this method would have enabled early cells to generate chemical energy without the need for actively driven ," said Mast summarizing their findings.

A simple difference in temperature constituted not only a helpful tool for the formation and multiplication of the first biomolecules, but could also have driven the metabolism of the first cells.

Explore further: We've been wrong about the origins of life for 90 years

More information: Lorenz M. R. Keil et al. Proton gradients and pH oscillations emerge from heat flow at the microscale, Nature Communications (2017). DOI: 10.1038/s41467-017-02065-3

Related Stories

We've been wrong about the origins of life for 90 years

August 16, 2016

For nearly nine decades, science's favorite explanation for the origin of life has been the "primordial soup". This is the idea that life began from a series of chemical reactions in a warm pond on Earth's surface, triggered ...

Micropore labyrinths as crucibles of life

January 27, 2015

Water-filled micropores in hot rock may have acted as the nurseries in which life on Earth began. An LMU team has now shown that temperature gradients in pore systems promote the cyclical replication and emergence of nucleic ...

Recommended for you

Seeing small-molecule interactions inside cells

December 12, 2018

Like people in a large company, proteins in cells constantly interact with each other to perform various jobs. To develop new disease therapies, researchers are trying to control these interactions with small-molecule drugs ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.