DNA damage repair—molecular insights

The first line of defense against skin cancer is the ability to repair DNA damage caused by UV light. The XPA protein plays an important role in the repair of certain DNA damage, and mutations in this protein have been implicated in xeroderma pigmentosum (XP) disorders, characterized by increased UV sensitivity and risk for skin cancer.

Walter J. Chazin, PhD, and colleagues from the Vanderbilt Center for Structural Biology investigated how XPA interacts with DNA and the effects of several disease-associated mutations in XPA on its molecular structure and ability to bind DNA.

Using nuclear , which allows for characterization of the structures of XPA molecules, they identified the critical parts of the protein that are responsible for binding DNA. Moreover, their results revealed that the extent of disruption to DNA-binding activity correlates with severity of disease symptoms.

These findings, published Oct. 13 in the Journal of Biological Chemistry, provide insight into XP disease and how several types of DNA damage are repaired.

More information: Norie Sugitani et al. Analysis of DNA binding by human factor xeroderma pigmentosum complementation group A (XPA) provides insight into its interactions with nucleotide excision repair substrates, Journal of Biological Chemistry (2017). DOI: 10.1074/jbc.M117.800078

Journal information: Journal of Biological Chemistry

Citation: DNA damage repair—molecular insights (2017, December 7) retrieved 20 March 2023 from https://phys.org/news/2017-12-dna-repairmolecular-insights.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Diabetes drug helps repair UV-damaged DNA in cells of 'Moon children'


Feedback to editors