Solutal Marangoni flows of miscible liquid drive transport without surface contamination

August 18, 2017, The Korea Advanced Institute of Science and Technology (KAIST)
Marangoni-driven convection flow generated at the interface between water and alcohol, and the flow visualization results. Credit: KAIST

A research team led by Hyoungsoo Kim, a professor of Mechanical Engineering at KAIST, succeeded in quantifying the phenomenon called, the Marangoni effect, which occurs at the interface between alcohol and water. It is expected that this finding will be a valuable resource used for effectively removing impurities from a surface fluid without any contamination, and developing materials that can replace surfactants.

This research, co-conducted with a research team led by Professor Howard A. Stone at Princeton University, was published online in Nature Physics on July 31.

The Marangoni effect, also known as tears of wine, is generated when two fluids having a different surface tension meet, causing finite mixing, spreading time and length scale. Typically, people believe that infinitely miscible liquids immediately mix together; however, it is not always true according to this paper.

The typical surface tension of alcohol is three times lower than that of water, and this different surface tension generates the Marangoni-driven convection flow at the interface of the two liquids. In addition, there is a certain amount of time required for them to mix.

This phenomenon has been discussed many times since it was discovered in early the 20th century, yet there was a limit to quantifying and explaining it.

Professor Kim, considering the mixing and spreading mechanism, used various flow visualization techniques and equipment for capturing high speed images in his experiment.

Through the flow visualization methods, the team succeeded in quantifying and explaining the complex, physicochemical phenomenon generated between water and alcohol. Moreover, they developed a theoretical model to predict the physicochemical hydrodynamic phenomena.

The theoretical model can predict the speed of Marangoni-driven convection flow, the area of a drop of alcohol and the time required to develop the flow field. Hence, this model can map out types of materials (e.g., alcohol) and the volume of a drop of liquid as applicable to target a specific situation.

Moreover, the research team believes that the interfacial enables the driving of bulk flows and that it can be a source of technology for effectively delivering drugs and removing impurities from a surface of substance without causing secondary contamination.

Above all, the results show a possibility for replacing surfactant with alcohol as a material used for delivering drugs. In the case of the , some drugs are encapsulated with a surfactant in order to be effectively transported in vivo; however, the surfactant accumulates in the body, which can cause various side effects, such as heart disease. Therefore, using new materials like alcohol for drug delivery will contribute to preventing the side effects caused by the surfactant.

"The is used for delivering drugs, but it is difficult to be expelled from the body. This will cause various side effects, such as heart diseases in asthmatic patients," said Professor Kim. "I hope that using new materials, like , will free people from these side effects."

Explore further: The Marangoni effect: A fluid phenom (w/ Video)

More information: Hyoungsoo Kim et al, Solutal Marangoni flows of miscible liquids drive transport without surface contamination, Nature Physics (2017). DOI: 10.1038/NPHYS4214

Related Stories

The Marangoni effect: A fluid phenom (w/ Video)

March 11, 2011

(PhysOrg.com) -- What do a wine glass on Earth and an International Space Station experiment have in common? Well, observing the wine glass would be one of few ways to see and understand the experiment being performed in ...

The Ouzo Effect under the magnifying glass

July 14, 2016

Pour some water into your glass of ouzo or pastis, and the beverage will change from transparent to milky: this is the well-known 'Ouzo effect'. But what will happen if you simply place a drop of ouzo on a surface and wait? ...

Engineers stop soap bubbles from swirling

September 13, 2016

The spinning rainbow surface of a soap bubble is more than mesmerizing – it's a lesson in fluid mechanics. Better understanding of these hypnotic flows could bring improvements in many areas, from longer lasting beer foam ...

Scientists make new high-tech liquid materials

February 9, 2017

Scientists at The Australian National University (ANU) have controlled wave-generated currents to make previously unimaginable liquid materials for new technological innovations, including techniques to manipulate micro-organisms.

Recommended for you

Information engine operates with nearly perfect efficiency

January 19, 2018

Physicists have experimentally demonstrated an information engine—a device that converts information into work—with an efficiency that exceeds the conventional second law of thermodynamics. Instead, the engine's efficiency ...

Team takes a deep look at memristors

January 19, 2018

In the race to build a computer that mimics the massive computational power of the human brain, researchers are increasingly turning to memristors, which can vary their electrical resistance based on the memory of past activity. ...

Artificial agent designs quantum experiments

January 19, 2018

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.