What fly guts could reveal about our health

July 27, 2017, University of Sydney
Fruit flies and gut bacteria in a lab. Credit: University of Sydney/Macquarie University

Increasingly understood to be vital for wellbeing, gut microbiota are the trillion of microorganisms that live in the digestive tract of humans and other animals. Known to affect a range of physiological traits including development, immunity, nutrition and longevity, researchers are now investigating how manipulating gut microbiota might influence other aspects of health.

Two new studies - from the University of Sydney's multidisciplinary Charles Perkins Centre and School of Life and Environmental Sciences (SOLES) in collaboration with Macquarie University's Department of Biological Sciences - have discovered the of the common fruit fly has a significant effect on their foraging behaviour and reproductive success, and that its influence can be carried down to the next generation.

Published in the prestigious Current Biology today, the study into foraging behaviour manipulated the type and timing of individual flies were exposed to, and examined their olfactory-guided preferences to food microbes and nutrients.

In addition to foraging for nutrients to achieve a balanced diet, the researchers found flies also forage for bacteria to populate a healthy gut flora. Responding to smells associated with particular bacteria in foods, the flies showed a distinct preference for more beneficial types of bacteria over less-beneficial types or food lacking the bacteria.

Lead author Dr Adam Wong, who conducted the research while at the University of Sydney and is now based at the University of Florida, said the findings warranted further investigation to determine how other animals interact with in foraging.

Fruit flies and gut bacteria in a lab, vertical. Credit: University of Sydney / Macquarie University

"We knew animals foraged for nutrients, in ways that optimise their performance and physiology." he said.

"Understanding they also forage for beneficial microbes opens up a whole new dimension for future research. The symbiotic relationship can shape how animals, including humans, may perceive and prefer different nutrients and microbes for better overall health."

In a separate study, published in Biology Letters, researchers inoculated flies with different types of microbes to observe the consequences of changes in the gut bacteria composition of sexually interacting fruit flies.

They found the reproductive investment and success of a mating pair was influenced by gut bacteria, as well as the body mass of offspring.

Lead author Dr Juliano Morimoto, now at Macquarie University, said the findings reveal the effect of gut microbiota on reproduction, but also suggest these effects can be carried over to the next generation.

Fruit flies and gut bacteria with illustration, for Biology Letters paper. Credit: University of Sydney / Macquarie University

"Given the importance of the gut microbiota in physiology and health, our findings reveal important and long-lasting effects of gut bacteria on reproduction and offspring traits," he said.

"As understanding of the and its effect increases, the potential for breakthroughs in understanding broader health impacts increases too."

Professor Stephen Simpson, Academic Director at the Charles Perkins Centre and a co-author on both papers, said the studies provided an exciting illustration of how microbes can influence the behaviour of host animals, which could be important for understanding gut microbiota and cognitive function in humans in the future.

"With the burgeoning interest in the role of the gut microbiome in health, and cross-talk between the gut and the brain, this demonstration that bacteria in the gut influences foraging and reproductive behaviour is of particular interest for further research," he said.

Dr Fleur Ponton, last author on both studies and based at Macquarie University's Department of Biological Sciences, said the success of this collaboration highlighted the importance of multidisciplinary and inter-institutional research.

"Beyond the biomedical significance of this research, there are potential interesting applications in the context of invasive and pest species control," she added.

Explore further: Gut bacteria tell the brain what animals should eat

More information: Current Biology (2017). DOI: 10.1016/j.cub.2017.07.022

Related Stories

Gut bacteria tell the brain what animals should eat

April 25, 2017

Neuroscientists have, for the first time, shown that gut bacteria "speak" to the brain to control food choices in animals. In a study publishing April 25 in the Open Access journal PLOS Biology, researchers identified two ...

Evolution of a species also involves the bacteria it carries

October 4, 2016

Animals live in close association with microorganisms, carrying beneficial bacteria while coping with pathogenic infections. Now, in a study published this week in PLoS Genetics, researchers from Instituto Gulbenkian de Ciência ...

Recommended for you

Scientists shed light on biological roots of individuality

February 16, 2018

Put 50 newborn worms in 50 separate containers, and they'll all start looking for food at roughly the same time. Like members of other species, microscopic C. elegans roundworms tend to act like other individuals their own ...

Plants are given a new family tree

February 16, 2018

A new genealogy of plant evolution, led by researchers at the University of Bristol, shows that the first plants to conquer land were a complex species, challenging long-held assumptions about plant evolution.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.