Flexible and cost-effective fabrication of nature inspired structural colors

July 7, 2017, Pohang University of Science & Technology

Throughout nature, colors generally arise from two sources: pigment colors and structural colors. For application purposes, pigments or dyes that absorb light are considered to be the traditional method to color materials due to their ease of usage. Despite their strengths, there are negative aspects to pigment colors such as potential for environmental damage during the manufacturing process and photochemical degradation which results in fading of the original color.

Structural colors, on the other hand, produce through nanostructures that reflect or scatter light. Feathers of birds and the scales of butterflies are two of the many examples of in nature. Furthermore. their structural spacings allow for the production of more distinct colors than is possible through pigments. However, despite the many advantages of structural colors in various applications, high fabrication costs and the inability to change a structural color once it has been applied has curtailed widespread implementation.

Research conducted by Geunbae Lim, a professor with the Department of Mechanical Engineering at Pohang University of Science and Technology (POSTECH), in collaboration with Taechang An, a professor with the Department of Mechanical Design Engineering at Andong National University, has successfully developed a new and cost-effective method for obtaining biomimetic structural colors with the ability to finely tune the completed structures. This achievement has been published in the world-renowned ACS Applied Materials & Interfaces.

The team used quasi-ordered scattering—the phenomenon where a constructively reflected wavelength is observed when nanostructures with the same size are uniformly distributed over an irradiated area— through ZnO fabrication. By successfully synthesizing ZnO into desired shapes through selective growth and etching, the team discovered the technique for large-scale and flexible fabrication of structural colors. The synthesis process and the resulting nanostructures can be fine-tuned by controlling the time and reagent concentration, and furthermore, masking techniques allow for the application of different structural colors on the same surface.

Lim remarked on the noteworthiness of this research because the proposed method has overcome existing limitations and is expected to be applicable to many fields including the eco-friendly fabrication of microelectrodes, sensors, and anti-tampering tags.

Explore further: Beetles spark development of color-changing nanoparticles for commercial use

Related Stories

Peacock colors inspire 'greener' way to dye clothes

February 1, 2017

"Fast fashion" might be cheap, but its high environmental cost from dyes polluting the water near factories has been well documented. To help stem the tide of dyes from entering streams and rivers, scientists report in the ...

Recommended for you

New fuel cell technology runs on solid carbon

January 22, 2018

Advancements in a fuel cell technology powered by solid carbon could make electricity generation from resources such as coal and biomass cleaner and more efficient, according to a new paper published by Idaho National Laboratory ...

Bio-renewable process could help 'green' plastic

January 19, 2018

When John Wesley Hyatt patented the first industrial plastic in 1869, his intention was to create an alternative to the elephant tusk ivory used to make piano keys. But this early plastic also sparked a revolution in the ...

Simulations show how atoms behave inside self-healing cement

January 19, 2018

Researchers at Pacific Northwest National Laboratory (PNNL) have developed a self-healing cement that could repair itself in as little as a few hours. Wellbore cement for geothermal applications has a life-span of only 30 ...

Looking to the sun to create hydrogen fuel

January 18, 2018

When Lawrence Livermore scientist Tadashi Ogitsu leased a hydrogen fuel-cell car in 2017, he knew that his daily commute would change forever. There are no greenhouse gases that come out of the tailpipe, just a bit of water ...

A new polymer raises the bar for lithium-sulfur batteries

January 18, 2018

Lithium-sulfur batteries are promising candidates for replacing common lithium-ion batteries in electric vehicles since they are cheaper, weigh less, and can store nearly double the energy for the same mass. However, lithium-sulfur ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.