Bird feathers inspire researchers to produce vibrant new colors

May 8, 2017
Bio-inspired bright structurally colored colloidal amorphous array enhanced by controlling thickness and black background. Credit: Yukikazu Takeoka

A Nagoya University-led research team mimics the rich color of bird plumage and demonstrates new ways to control how light interacts with materials. 

Bright colors in the natural world often result from tiny structures in feathers or wings that change the way light behaves when it's reflected. So-called "structural color" is responsible for the vivid hues of birds and butterflies. Artificially harnessing this effect could allow us to engineer new for applications such as solar cells and chameleon-like adaptive camouflage.

Inspired by the deep blue coloration of a native North American bird, Stellar's jay, a team at Nagoya University reproduced the color in their lab, giving rise to a new type of artificial pigment. This development was reported in Advanced Materials.

"The Stellar's jay's feathers provide an excellent example of angle-independent structural color," says last author Yukikazu Takeoka, "This color is enhanced by dark materials, which in this case can be attributed to black melanin particles in the feathers."

In most cases, structural colors appear to change when viewed from different perspectives. For example, imagine the way that the colors on the underside of a CD appear to shift when the disc is viewed from a different angle. The difference in Stellar's jay's blue is that the structures, which interfere with light, sit on top of black particles that can absorb a part of this light. This means that at all angles, however you look at it, the color of the Stellar's Jay does not change.

The team used a "layer-by-layer" approach to build up films of fine particles that recreated the microscopic sponge-like texture and black backing particles of the bird's feathers. 

To mimic the feathers, the researchers covered microscopic black core particles with layers of even smaller transparent particles, to make raspberry-like particles. The size of the core and the thickness of the layers controlled the color and saturation of the resulting pigments. Importantly, the of these did not change with viewing angle.

"Our work represents a much more efficient way to design artificially produced angle-independent ," Takeoka adds. "We still have much to learn from biological systems, but if we can understand and successfully apply these phenomena, a whole range of new metamaterials will be accessible for all kinds of advanced applications where interactions with are important."

Explore further: Soft matter exhibiting angle-independent structural colors

More information: Masanori Iwata et al. Bio-Inspired Bright Structurally Colored Colloidal Amorphous Array Enhanced by Controlling Thickness and Black Background, Advanced Materials (2017). DOI: 10.1002/adma.201605050

Related Stories

Soft matter exhibiting angle-independent structural colors

November 3, 2015

Chameleon skin and some type of fish skin are regarded as the prototype of structurally colored materials that change their color appearance upon external stimuli, which can be light and dark transitions or other environmental ...

Taking cues from nature to develop colors that do not fade

June 8, 2015

Imagine a favorite T-shirt that does not dull with time, or a car that never needs a new coat of paint. A study done at The University of Akron may be able to make this a reality in the near future. Research performed at ...

Peacock colors inspire 'greener' way to dye clothes

February 1, 2017

"Fast fashion" might be cheap, but its high environmental cost from dyes polluting the water near factories has been well documented. To help stem the tide of dyes from entering streams and rivers, scientists report in the ...

Research comes through with flying colors

April 25, 2017

Like a chameleon changing colors to blend into the environment, Lawrence Livermore researchers have created a technique to change the color of assembled nanoparticles with an electrical stimulant.

Recommended for you

Close up view of growing polymer chain show jump steps

October 20, 2017

(Phys.org)—A team of researchers at Cornell University has devised a means for watching as a polymer chain grows after application of a catalyst. In their paper published in the journal Science, the team explains how they ...

The birth of a new protein

October 20, 2017

A yeast protein that evolved from scratch can fold into a three-dimensional shape—contrary to the general understanding of young proteins—according to new research led by the University of Arizona.

Discovery lights path for Alzheimer's research

October 19, 2017

A probe invented at Rice University that lights up when it binds to a misfolded amyloid beta peptide—the kind suspected of causing Alzheimer's disease—has identified a specific binding site on the protein that could facilitate ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.