Improving risk assessment of nano particles as food additives

June 27, 2017, Swiss National Science Foundation

The anticaking agent E551 silicon dioxide, or silica, has been used widely in the food industry over the past 50 years, and was long thought to be quite safe. Now, however, researchers working on the National Research Programme "Opportunities and Risks of Nanomaterials" have discovered that these nanoparticles can affect the immune system of the digestive tract.

It ensures that dry foods such as instant soup, instant coffee and spice powder retain good flow properties. "Synthetic amorphous silica", the ultrafine powder which is obtained from quartz and bears the E number E551, has been used for around a century with no apparent cause for concern. "Previously it was assumed that these nanoparticles are completely inert," explains Hanspeter Nägeli from the Institute for Pharmacology and Toxicology at the University of Zurich.

Awakening the self-defence mechanism

Now, however, Nägeli and his colleagues working on the National Research Programme "Opportunities and Risks of Nanomaterials" (NRP 64) have found out that these particles are capable of activating certain immune . "We have demonstrated that inactive are stimulated in response to contact with nanosilica, triggering a reaction similar in nature to an inflammation," says Nägeli. Their findings are piquing interest, since dendritic cells have a key role to play in the immune system of the gut: They maintain a dynamic balance between peace and war, or defence and tolerance reactions. Dendritic cells are significantly involved in the immune system's fight against toxins and pathogens. Moreover, they coordinate the body's favourable response to food components or agents of normal gut flora.

As the researchers have shown in test with mouse cell cultures, dendritic cells ingest nanosilica into their cell interior. In doing so, they are awakened from their slumber, and start to discharge a signal molecule that causes an inflammation. The researchers do not know whether such processes might cause the immunological balance of the to tend towards increased defence responses. Nevertheless, their findings could explain the observation that inflammatory gut illnesses seem to spread when more people consume instant products.

"It is not a case of triggering fear. Inflammatory gut illnesses are dependent on a range of factors," says Nägeli. The presence of nanosilica in food is no more than a small piece in the large jigsaw puzzle that makes up these complex illnesses. Nägeli does believe his findings should make us more careful about how we use these particles in food, however. "Their mass use needs to be rethought," write the researchers in their article.

Improving risk evaluation

In a further publication Nägeli directs criticism towards the current safety assessment of nanosilica. "The toxicology analyses list no immunological criteria." In addition, tests involving the addition of particles to rat food have shown liver damage in the highest dosages, although this was not taken into account in the risk evaluation. While no link with nanosilica has apparently been proven, one cannot be excluded, given current knowledge. "For this reason, we ask a principle of caution to be exercised, and for the tolerance level in to be reexamined," says Nägeli.

Explore further: Not such a 'simple' sugar—glucose may help fight cancer and inflammatory disease

More information: … te-Paper-NFP64-E.pdf

Related Stories

Tuberculosis and HIV co-infection

October 18, 2016

The HIV virus increases the potency of the tuberculosis bacterium (Mtb) by affecting a central function of the immune system. This is the conclusion of a study carried out by researchers at Linköping University in Sweden. ...

Immune cells may help fight against obesity

September 15, 2015

While a healthy lifestyle and "good genes" are known to help prevent obesity, new research published on September 15 in Immunity indicates that certain aspects of the immune system may also play an important role. In the ...

Recommended for you

Physicists reveal why matter dominates universe

March 21, 2019

Physicists in the College of Arts and Sciences at Syracuse University have confirmed that matter and antimatter decay differently for elementary particles containing charmed quarks.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.